Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/217
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorChumphol Bunkhumpornpat-
dc.contributor.advisorรัฐสิทธิ์ สุขะหุต-
dc.contributor.authorKriengkrai Chaiminen_US
dc.date.accessioned2014-08-20T08:26:32Z-
dc.date.available2014-08-20T08:26:32Z-
dc.date.issued2014-07-01-
dc.identifier.urihttp://cmuir.cmu.ac.th/handle/6653943832/217-
dc.description.abstractThis independent study aims to develop a prototype to predict computer network intruder packages in the Chiang Mai University Library dataset. The experiment applies Naive Bayes classifier on 300,000 records of traffic data by adjusting parameters in order to acquire the best accurate results. Performance measures consist of accuracy, precision, recall, F-measure, and root mean squared error. In addition, we employ KDD Cup Data 1999 which contains 37 categories of network intrusion to discover intrusion types that compromise the Chiang Mai University Library.en_US
dc.language.isothen_US
dc.publisherเชียงใหม่ : บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่, 2557en_US
dc.subjectData Miningen_US
dc.subjectNaive Bayesen_US
dc.subjectNetwork Intrusion Detectionen_US
dc.titleระบบตรวจจับการบุกรุกเครือข่ายสำหรับสำนักหอสมุดมหาวิทยาลัยเชียงใหม่ โดยการใช้ตัวจำแนกข้อมูลนาอีฟเบส์en_US
dc.title.alternativeNetwork Intrusion Detection System for Chiang Mai University Library Using Naive Bayes Classifieren_US
dc.typeThesisen_US
thailis.classification.ddc004-
thailis.controlvocab.lcshData Mining-
thailis.controlvocab.thashคลังข้อมูล-
thailis.manuscript.callnumber004-
Appears in Collections:SCIENCE: Theses



Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.