

The objective of this research was to study the effect of various parameters such as temperatures and pH to the formation of semiconductor material; cadmium indium selenide $\left(\mathrm{CdIn}_{2} \mathrm{Se}_{4}\right)$ thin films, which were fabricated by sol-gel dip-coating method. This n-type semiconductor compound is suitable for application as thermoelectric materials. Cadmium, indium, selenium precursors were respectively and separately dissolved by solvents: ethanol, hydrochloric acid, and acetic acid to form metal alkoxides. Then precursor solutions were mixed together in N_{2} atmosphere. These metal alkoxides were then undergone hydrolysis by adding water and undergone polycondensation by adding ethylene glycol to become gel. These gels were adjusted to various acid-base values by adding diethylnolamine. Glass substrates were dipped into the gel to form thin films. These thin films were annealed at various temperatures in N_{2} atmosphere and characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD) and fourier transfrom infrared spectroscopy (FT-IR)
techniques. The results were indicated that $\mathrm{CdIn}_{2} \mathrm{Se}_{4}$ compound occurred by the reaction at room temperature with pH 4 and annealed at $450{ }^{\circ} \mathrm{C}$ in N_{2} atmosphere.

(I)

(III)

(II)

(IV)

