TABLE OF CONTENTS

TABLE OF CONTENTS	
	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	v
ABSTRACT (THAI)	viii
LIST OF TABLES	XX
LIST OF FIGURES	xxi
ABBREVATIONS AND SYMBOLS	xxxii

CHAPTER 1 INTRODUCTION

ADDREVATIONS	AND ST MIDOLS	XXXII
CHAPTER 1 INTI	RODUCTION	
1.1	Zinc oxide	3
	1.1.1 Crystal structure	3
	1.1.2 Mechanical properties	5
	1.1.3 Electronic properties	5
	1.1.4 Optical properties	6
	1.1.5 Applications	8
	1.1.6 Doping ZnO with a metal	8
	1.1.7 ZnO nanostructure	
1.2	Niobium	10
ght 1.3	Flame Spray Pyrolysis (FSP)	University

	1.3.1	The basic steps of particle formation	17
		and growth by gas-to-particle conversion in FSP	
		1.3.1.1 Nucleation	17
		1.3.1.2 Nucleated condensation	17
		1.3.1.3 Coagulation	18
		1.3.1.4 Coalescence	20
1.4	The th	neory of characterization techniques	22
	1.4.1	X-ray diffraction method	22
		1.4.1.1 Crystal structure	22
		1.4.1.2 Bragg's Law	24
		1.4.1.3 Crystallinity	25
		1.4.1.4 Lattice parameters	26
		1.4.1.5 Powder diffraction and identification	26
		of phases by XRD	
	1.4.2	Brunauer-Emmett-Teller (BET) analysis-Particle	28
		size (d _{BET})	
	1.4.3	Scanning Electron Microscope (SEM)	29
	1.4.4	Energy Dispersive X-ray Spectroscopy (EDS)	33
	1.4.5	Transmission Electron Microscopy and diffraction	34
	1.4.6	UV-Vis absorption spectroscopy	37
	1.4.6.	1 Beer's Law	39
		1.4.6.2 Tauc's relation	39
	1.4.7	Atomic Force Microscopy (AFM)	43

	1.4.7.1 Basic principles	44
	1.4.7.2 Imaging modes	45
	1.4.7.3 AFM cantilever deflection measurement	48
REFERENCES		49

CHAPTER 2 SYNTHESIS AND CHARACTERIZATION

OF PURE ZnO AND Nb-DOPED ZnO NANOPARTICLES

2.1	Resear	ch overviews	60
	2.1.1	Synthesis of ZnO nanoparticles	60
	2.1.2	Flame spray synthesis of nanoparticles	62
	2.1.3	Flame spray pyrolysis based on pure ZnO	64
		and metal-doped ZnO	
2.2	Experi	mental	69
	2.2.1	Chemicals and equipments	69
	2.2.2	Solubility test	69
	2.2.3	Precursor preparation for FSP	71
	2.2.4	Procedures for synthesizing nanoparticles by FSP	73
	2.2.5	Particle characterization method	75
2.3	Result	s and discussion	76
	2.3.1	Nanoparticles synthesis	76
		2.3.1.1 Flame-made pure ZnO and Nb-doped ZnO	76
		nanoparticles	
		2.3.1.2 Powder appearance	77

	2.3.2	Characterization of flame-made nanoparticles	77
		2.3.2.1 X-ray diffraction analysis	77
		2.3.2.2 BET analysis	79
		2.3.2.3 Transmission electron microscopy (TEM)	80
		and Energy dispersive x-ray spectroscopy (ED	DS)
		2.3.2.4 Scanning Electron Microscopy (SEM)	85
		and Energy Dispersive X-ray Spectrometry	
		(EDS): dot-mapping modes	
		2.3.2.5 UV-vis absorption spectroscopy	88
2.4	Concl	usions	90
REFERENC	ES		91

CHAPTER 3 APPLICATION OF PURE ZnO AND Nb-DOPED

ZnO FOR USE AS PHOTOVOLTAIC DEVICES

3.1	Introd	uction	98	
	3.1.1	Inorganic solar cells	98	
	3.1.2	Organic solar cells	99	
	3.1.3	Advantages of organic solar cells	103	
	3.1.4	Characterization of organic bulk heterojunction	103	
		solar cells		
	3.1.5	Principles of bulk heterojunction solar cell	103	
	3.1.6	Literature review	109	
3.2	Chemi	icals and equipments	¹¹⁶ e	

	3.2.1	Solar cell preparation	116
	3.2.2	Solar cell characterization	117
3.3	Exper	imental	118
	3.3.1	Device fabrication	118
		3.3.1.1 The effect of Nb loading on the	
		solar efficiency of the P3HT:PCBM:Nb-doped	
		ZnO blend films and the amount of Nb-doped	
		ZnO loading on the solar efficiency of the	
		P3HT:PCBM:Nb-doped ZnO blend films	118
		3.3.1.2 The effect of niobium doping on composite	119
		solar cells using the 3 mol% Nb-doped ZnO	
		NPs and the use of 1,3,5-trichlorobenzene	
		(TCB) as co-solvent for enhancing	
		nanostructured P3HT:PCBM:Nb/ZnO layer	
	3.3.2	Measurements and characterization	120
3.4	Result	ts and Discussion	122
	3.4.1	The effect of Nb loading on the solar efficiency	122
		of the P3HT:PCBM:Nb-doped ZnO blend films and the	•
		amount of Nb-doped ZnO loading on the solar efficience	y o
		of the P3HT:PCBM:Nb-doped ZnO blend films	

xvi

	3.4.2	The effect of niobium doping on composite solar	130
		cells using the 3.00 mol% Nb-doped ZnO	
		nanoparticles and the use of 1, 3, 5- trichlorobenzene	
		(TCB) as co-solvent for enhancing nanostructured	
		P3HT:PCBM: Nb-doped ZnO layer	
3.5	Concl	usions	135
REFERENC	CES		136
CHAPTER 4 APPI	LICATI	ON OF PURE ZnO AND Nb-DOPED	
ZnO	FOR U	SE AS GAS SENSORS	
4.1	Introd	uction	145
	4.1.1	Gas sensing mechanism	149
	4.1.2	Temperature Limitations	153
	4.1.3	Response and recovery time	154
	4.1.4	Selectivity	155
	4.1.5	Metal additives affect	155
	4.1.6	Literature review	157
4.2	Chemi	icals and equipments	165
4.3	Experi	imental	165
	4.3.1	Sensing film fabrication	165
	4.3.2	Sensing film Characterization	166
	4.3.3	Gas sensing characterization	166
4.4	Result	ts and discussion	168

	4.4.1 Sensing film properties	168
	4.4.1.1 X-ray diffraction analysis	168
	4.4.1.2 SEM-film thickness sensing layer	169
	4.4.1.3 Energy Dispersive X-ray Spectrometry	170
	(EDS): line scan mode	
	4.4.2 Gas sensing properties	175
4.5	Conclusions	185
REFEREN	CES	186
CHAPTER 5 APP	LICATION OF PURE ZnO AND Nb-DOPED ZnO	
FOR	LUSE AS PHOTOCATALYSTS	
5.1	Introduction	192
	5.1.1 Function and principles of photocatalysts	195
	5.1.2 Photocatalytic oxidation	197
	5.1.3 Photocatalytic reduction	198
	5.1.4 Effect of surfuce area on photocatalytic activity	198
	5.1.5 Effect of electron-hole recombination on photo	199
	catalytic activity	
	5.1.6 Design of photocatalysts of high activity	200
	5.1.7 Increasing efficiency by incorporation of metal	200
	nanoparticles	
	516 Literature review	202
	Chemicals and equipments	206
	S reser	200

xviii

	5.3	Experimental	207
		5.3.1 Calibration curve measurement	207
		5.3.2 Preparation of photocatalyst suspension and operation	207
	5.4	Results and discussion	209
	5.5	Conclusions	212
REFF	ERENC	ES	214
CURRICUL	UM VI	ΓΑΕ	222

Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table		Page
1.1	The basic materials parameters of wurtzite ZnO.	7
1.2	The electron configuration of vanadium, niobium and tantalum.	10
1.3	Physical properties of Nb.	13
2.1	Ag-ZnO catalysts prepared via FSP (3/8, 5/5, 8/3) and wet-phase	68
	synthesis together with measured SSA and reaction performance in	
	photodegradation of MB.	
2.2	Precursor preparation for FSP.	72
3.1	Nonexhaustive survey of reports focusing on photovoltaic devices	110
	based on P3HT:PCBM and P3HT:PCBM:Metal or Metal Oxide blends.	
3.2	Solar cell parameters.	125
3.3	Solar cell parameters.	128
3.4	Solar cells characteristics of P3HT: PCBM and P3HT:PCBM:3.00 mol%	132
	Nb-doped ZnO bulk-hetero junction solar cells blends (both with and	
	without added TCB) annealed for 5 and 7 min.	
4.1	A summary on the gas sensing properties of pure/doped metal oxide	157
	semiconductors for NO ₂ , CO, C ₂ H ₅ OH and acetone gas.	
5.1	The common chemical oxidants, placed in the order of their oxidizing	197
	Strength.	

5.2The comparison of time for completing the degradation process of
methanol, ethanol, glucose and sucrose of different types of photocatalyst.212

xxii

LIST OF FIGURES

Figur	e	Page
1.1	crystal structure of zinc oxide. (a) Wurtzite phase ZnO, (b) Zincblende	4
	phase ZnO.	
1.2	The periodic table.	11
.3	Sketch of the basic steps of particle formation.	16
1.4	Steps leading to grain growth by coalescence of small and large grains	20
	with a curved grain boundary.	
.5	Image of a lab-scale reactor (right). The critical sub-processes in the FSP	21
	process and their approximate spatial location are indicated on the left.	
	Nanoparticle samples extracted from the flame at the indicated heights	
	are shown.	
6	A unit cell from a three dimensional lattice.	23
l .7	Deriving Bragg's law using the reflection geometry and applying	24
	Trigonometry.	
.8	XRD pattern of FeOOH sample.	27
.9	X-ray diffraction system used in this research.	2
1.10	Schematic diagram of a typical SEM.	31
.11	Electrons produced in SEM.	32
12	SEM system used in this research.	32

xxiii

1.13	Schematic diagram of a TEM.	36
1.14	TEM system used in this research.	36
1.15	Attenuation of a beam of radiation by an absorbing solution. The larger	38
	arrow on the incident beam signifies a higher radiant power than is	
	transmitted by the solution. The path length of the solution is b , and the	
	concentration is c.	
1.16	Schematic diagram of the absorption process.	40
1.17	UV-vis spectrum of nanostructured zinc oxide.	42
1.18	Varian Cary 50 UV-vis absorption spectrophotometer.	42
1.19	Drawing of basic principle of AFM. A cantilever, with a very small	43
	tip (probe), moves along the surface and experiences atomic forces.	
	Laser and Photodiode are used to measure those forces.	
2.1	The solubility tests of the precursors were performed using zinc	70
	napthenate as a Zn precursor dissolved in several organic solvents	
	prior to the precursor preparation.	
2.2	The solubility tests of the precursors were performed using niobium	70
	(V) ethoxide as a Nb precursor dissolved in several organic solvents prior	
	to the precursor preparation.	
2.3	The solubility tests of the precursors were performed using zinc	71
	napthenate and niobium (V) ethoxide as Zn and Nb precursors dissolved	
	well in toluene:methanol mixture with ratio of 70:30 vol% prior to the	
	precursor preparation.	

2.4	The experimental setup for flame-made pure ZnO and Nb-doped	73
	ZnO nanoparticles.	
2.5	Spray flame (0.5 M zinc naphthenate and niobium (V) ethoxide in	76
	toluene/methanol: 70/30 vol%).	
2.6	The flame-made (5/5) pure ZnO and 0.10-3.00 mol% Nb-doped ZnO	77
	nanoparticles ordered from the left to right with increasing Nb	
	concentrations.	
2.7	XRD patterns of the flame-made (5/5) pure ZnO and Nb-doped ZnO	78
	nanoparticles with different Nb concentrations.	
2.8	The specific surface area (SSA_{BET}) and BET-particle diameter (d_{BET})	80
	of the flame-made (5/5) pure ZnO and Nb-doped ZnO nanoparticles	
	with different Nb concentrations.	
2.9	TEM bright-field image of (a, b) pure ZnO, (c, d) 1.00 mol% Nb-doped	81
	ZnO nanoparticles and (e, f) 3.00 mol% Nb-doped ZnO nanoparticles.	
2.10	TEM bright-field image and EDS mode of 1.00 mol% Nb-doped ZnO.	82
2.11	EDS spectrum (line scan mode) of pure ZnO nanoparticles.	83
2.12	EDS spectrum (line scan mode) of pure 0.25 mol% Nb-doped ZnO	83
	nanoparticles.	
2.13	EDS spectrum (line scan mode) of pure 0.50 mol% Nb-doped ZnO	84
	nanoparticles.	
2.14	EDS spectrum (line scan mode) of pure 1.00 mol% Nb-doped ZnO	84
	nanoparticles. Over a la l	

2.15	EDS spectrum (line scan mode) of pure 3.00 mol% Nb-doped ZnO	85
	nanoparticles.	
2.16	SEM image and EDS dot-mapping modes of the flame-made (5/5)	86
	pure ZnO nanoparticles.	
2.17	SEM image and EDS dot-mapping modes of the flame-made (5/5)	86
	0.25 mol% Nb-doped ZnO.	
2.18	SEM image and EDS dot-mapping modes of the flame-made (5/5)	87
	0.50 mol% Nb-doped ZnO.	
2.19	SEM image and EDS dot-mapping modes of the flame-made (5/5)	87
	1.00 mol% Nb-doped ZnO.	
2.20	SEM image and EDS dot-mapping modes of the flame-made (5/5)	88
	3.00 mol% Nb-doped ZnO.	
2.21	UV-vis absorption spectra of pure ZnO and Nb-doped ZnO	
3.1	Chemical structures and abbreviations of some conjugated organic	101
	molecules.	
3.2	Schematic layout of an organic solar cell.	102
3.3	Schematic drawing of the donor and acceptor energy levels.	103
3.4	Typical J-V characteristics of an organic PV cell.	104
3.5	The interface between two different semiconducting polymers	107
	(D = donor, A = acceptor) can facilitate either charge transfer	
	by splitting the exciton or energy transfer, where the whole exciton	
	is transferred from the donor to the acceptor.	

3.6	Device configuration of the polymer solar cells.	118
3.7	The bulk heterojunction photovoltaic devices (a) before and (b)	120
	after depositing with LiF and Al electrode.	
3.8	The solar simulation system.	121
3.9	The EQE simulation system.	122
3.10	Device structure and energy level diagram of the components.	123
3.11	J-V curves under 120 mW/cm ² white light illumination of Nb-doped	124
	ZnO loading with different Nb concentrations on device performance.	
3.12	EQE spectra of Nb-doped ZnO loading with different Nb concentrations	124
	on device performance.	
3.13	The J-V curves of P3HT:PCBM:Nb-doped ZnO photovoltaic cells	126
	measured in the ambient atmosphere with 120 mW/cm ² white-light	
	irradiation.	
3.14	EQE spectra of the device fabricated using BHJ films with 3.00 mol%	127
	Nb-doped ZnO concentrations of 24, 27, 30, and 33 vol%.	
3.15	Absorption spectra of P3HT:PCBM:Nb-doped ZnO films at various	128
	concentrations of Nb-doped ZnO solution blended into the P3HT:PCBM	
	active layer.	
3.16	The J-V curves of P3HT:PCBM:1-butanol photovoltaic cells measured	130
	in the ambient atmosphere with 120 mW/cm ² white-light irradiation.	
3.17	J-V characteristics of P3HT:PCBM and P3HT:PCBM:3.00 mol%	131
	Nb-doped ZnO bulk-hetero junction solar cells blends (both with and	
	without added TCB) annealed for 5 and 7 min.	

3.18	EQE spectra of P3HT:PCBM and P3HT:PCBM:3.00 mol%Nb-doped	133
	ZnO bulk-hetero junction solar cells blends (both with and without	
	added TCB) annealed for 7 min.	
3.19	AFM images of P3HT:PCBM:3.00 mol% Nb-doped ZnO spin-coated	134
	from (a) CB and (b) CB+TCB annealed for 7 min.	
4.1	Schemetic drawings of sensor devices (a) sintered block type, (b) thick-	146
	or thin-film type.	
4.2	Typical characteristics of semiconductor gas sensor: (a) response	147
	transient; (b) temperature dependence of gas response; (c) dependence	
	of Rg on gas concentration.	
4.3	The adsorbed molecule can significantly modify the dielectric property	150
	at the surface of the semiconductor gas sensor.	
4.4	Schematic diagrams of the as-pasted ZnO nanoparticles.	153
4.5	The response and recovery time of n-type semiconductor for reducing gas.	154
4.6	Mechanism of sensitization by metal additive.	156
4.7	(a) Photograph of sensor substrate including interdigitated comb-like	160
	Pt electrodes and a resistive heater. (b) Zn thin-film sputtered sensor	
	substrate. (c) A schematic illustration for the sonochemical growth of	
	vertically aligned ZnO nanorod arrays on a sensor substrate.	
4.8	(a) Photograph of sensor substrate including interdigitated comb-like	166
	Au electrodes. (b) ZnO thick-film spin coat sensor substrate.	
4.9	Gas sensor measurement setup.	167

4.10	XRD patterns of the flame-made (5/5) pure ZnO and Nb-doped ZnO	169
	nanoparticles with different Nb concentrations, and samples of	
	sensing films were spin-coated on Au/Al ₂ O ₃ substrate after	
	annealing and sensing test at 350°C.	
4.11	SEM micrographs of flame-made ZnO thick films as a sensor.	170
4.12	The EDS line scan mode of sensor based on flame-made pure	171
	ZnO nanoarticles.	
4.13	The EDS line scan mode of sensor based on flame-made	172
	0.25 mol% Nb-doped ZnO nanoarticles.	
4.14	The EDS line scan mode of sensor based on flame-made	173
	0.50 mol% Nb-doped ZnO nanoarticles.	
4.15	The EDS line scan mode of sensor based on flame-made	174
	1.00 mol% Nb-doped ZnO nanoarticles.	
4.16	Dynamic response of pure ZnO and 0.25, 0.50 and 1.00 mol%	175
	Nb-doped ZnO gas sensor towards 0.1–4 ppm NO ₂ gas square pulses	
	at 250°C.	
4.17	Dynamic response of pure ZnO and 0.25, 0.50 and 1.00 mol%	176
	Nb-doped ZnO gas sensor towards 0.1–4 ppm NO ₂ gas square pulses	
	at 300°C.	
4.18	Dynamic response of pure ZnO and 0.25, 0.50 and 1.00 mol%	176
	Nb-doped ZnO gas sensor towards 0.1–4 ppm NO ₂ gas square pulses	
	at 350°C. by Chiang Mai Un	

4.19	The response of Nb-doped ZnO gas sensor towards 4 ppm of NO_2	178
	versus the operating temperature. The composition of 0.50 mol%	
	Nb in ZnO thin film shows a maximum response of 1640 at 300°C.	
4.20	Variation of response (left) of NO2 concentrations (0.1–4 ppm)	179
	and variation of response times (right) with change in resistance	
	at 300°C.	
4.21	Dynamic response of pure ZnO and 0.25, 0.50 and 1.00 mol%	180
	Nb-doped ZnO gas sensor towards 50–1000 ppm C_2H_5OH gas square	
	pulses at 350°C.	
4.22	Variation of response of C_2H_5OH concentrations (50–1000 ppm)	181
	with change in resistance at 350°C.	
4.23	Dynamic response of pure ZnO and 0.25, 0.50 and 1.00 mol%	182
	Nb-doped ZnO gas sensor towards 50-1000 ppm acetone gas	
	square pulses at 350°C.	
4.24	Variation of response of acetone concentrations (50-1000 ppm)	182
	with change in resistance at 350°C.	
4.25	Dynamic response of pure ZnO and 0.25, 0.50 and 1.00 mol%	183
	Nb-doped ZnO gas sensor element from 50–1000 ppm CO	
	gas square pulses at 350°C	
4.26	Variation of response of CO concentrations (50–1000 ppm)	184
	with change in resistance at 350°C.	

4.27	Variation of response with concentration of NO ₂ (4 ppm), CO,	184	
	C_2H_5OH and acetone (1000 ppm) at 350°C for sensor of pure ZnO		
	as compared to 0.25, 0.50 and 1.00 mol% Nb-doped ZnO.		
5.1	Bandgap energies for some common semiconductor materials at 0 K.	193	
5.2	The eletromagnetic spectrum.	193	
5.3	Schematic representation of the mechanism of photocatalytic activity.	196	
	On absorption of photon of energy hv , electrons are excited from valence		
	band (VB) to conduction band (CB). There is a transfer of electron to		
	oxygen molecule to form superoxide ion radical ($^{\circ}O^{-2}$) and a transfer of		
	electron from water molecule to VB hole to form hydroxyl radical (*OH).		
5.4	Incorporation of silver nanoparticles facilitate longer charge separation	201	
	by trapping photogenerated electrons.		
5.5	Schematic diagram of spiral photoreactor.	208	
5.6	Photocatalytic degradation rate of methanol on pure ZnO and	209	
	Nb-doped ZnO nanoparticles with different Nb loading.		
5.7	Photocatalytic degradation rate of ethanol on pure ZnO and	210	
	Nb-doped ZnO nanoparticles with different Nb loading.		
5.8	Photocatalytic degradation rate of sucrose on pure ZnO and	210	
	Nb-doped ZnO nanoparticles with different Nb loading.		
5.9	Photocatalytic degradation rate of glucose on pure ZnO and	211	
	Nb-doped ZnO nanoparticles with different Nb loading.		

Å	Angstrom
Au	Gold
Al ₂ O ₃	Alumina
at%	atomic %
C	Amount of carbon
cm	Centimeter
cm ³ /min	Cubic centimeter per minute
CRT	Cathode-Ray Tube
CVD	Chemical Vapor Deposition
°C	Degrees Celsius
$\mathbf{d}_{\mathbf{hkl}}$	Interplanar distance between (hkl) planes
d	the lattice planar spacing or thickness
$d_{ m EM}$	different primary particle sizes
СВ	Conduction Band
СВ	Chlorobenzene
d _{BET}	BET-particle diameter
e	Electron
eV	Electron Volt
E	binding energy
E_0	Energy of ground state
E _b	Binding energy
E _F	Fermi level
Eg	Optical band gap of the semiconductor
E _{CB}	Conduction band energy
E _{VB}	Valence band energy

ABBREVIATIONS AND SYMBOLS

Energy of vacuum level E_{vac} FF Fill factor **EPMA** Electron probe micro-analysis by X-ray grams/liter g/L Hour h Plank's constant (6.63×10^{-34} Js), hour H**HMDSO** Hexamethyldisiloxane номо Highest occupied molecular orbital hν Photon energy h^+ Hole Intensity of the incident beam I_0 Ι Intensity of the transmittance Short circuit current J_{SC} ITO Indium-tin oxide **IUPAC** International Union of Pure and Applied Chemistry **JCPDS** Joint Committee Powder Diffraction Standards Κ Kelvin keV Kilo electron volt kV Kilo-volt Lowest unoccupied molecular orbital LUMO L/min Liter per minute М Mol per liter Milligram mg Minute min Milliliter mL m² Square meter Millisiemen mS Order of diffraction

xxxii

Na	Avogadro's number (6.02×10^{23})
O ₂	Oxygen gas
•O ₂	Superoxide radical
•ОН	Hydroxyl radical
rpm	Revolution per minute
R ₀	Resistance in air
Rg	Resistance when the gas is present
Т	Transmittance
$T_{\rm rec}$	Recovery time
T _{res}	Response time
VB	Valence band
V _{OC}	Open circuit voltage
V _m I _m	The maximum deliverable power
	The volume of gas adsorbed at STP per unit mass of
	adsorbent, when the surface is covered by a
$V_{ m m}$	unimolecule layer of adsorbate
Ζ	Atomic number
λ	Wavelength
μg	Microgram (10 ⁻⁶ g)
μg C	Microgram of carbon
μm	Micron (10^{-6} meter)
μ _s	Electron mobility at the surface
μS/cm	MicroSiemens /square centimeter
	Absorptivity
ε	The permittivity of the vacuum
θ	The Bragg angle for the reflection
rivent	Frequency 2 All Preventies TV
η	Power conversion efficiency
rig	hts reserved