ชื่อเรื่องวิทยานิพนธ์ การวิเคราะห์สมรรถนะของเครื่องอัดประจุโคโรนา

แบบเข็มสำหรับการวัดขนาดละอองลอย

ผู้เขียน นายพงศกร ชูพันธ์

ปริญญา วิศวกรรมศาสตรมหาบัณฑิต (วิศวกรรมพลังงาน)

อาจารย์ที่ปรึกษาวิทยานิพนธ์ ผศ.คร. นคร ทิพยาวงศ์

บทคัดย่อ

วิทยานิพนธ์นี้มีวัตถุประสงค์เพื่อศึกษาสมรรถนะการทำงานของเครื่องอัดประจุโคโรนา แบบเข็มสำหรับการวัดขนาดละอองลอย ซึ่งได้ทำการออกแบบและสร้างเครื่องต้นแบบเครื่องอัด ประจุโคโรนาแบบเข็ม และทำการทดสอบโดยการทดสอบได้กำหนดแรงดันไฟฟ้าศักย์สูงด้านบวก และลบอยู่ในช่วง 1-10 กิโลโวลต์ และอัตราการไหลของอากาศอยู่ในช่วง 1-10 ลิตรต่อนาที และ มุมของโคโรนาเข็ม 10° และ 20° จากการศึกษาพบว่าเมื่อจ่ายแรงดันไฟฟ้าศักย์สูงด้านบวกและลบ เครื่องอัดประจุแบบเข็มที่มีขนาดปลายเข็ม 10° ในพื้นที่อัดประจุจะให้กระแสอัดประจุสูงกว่า เข็มโลโรนาที่มีขนาดปลายเข็ม 20° นอกจากนี้ยังพบว่าที่แรงดันไฟฟ้าศักย์สูงด้านลบทำให้เครื่องอัดประจุแบบเข็มที่มีขนาดปลายเข็ม 10° และ 20° มีกระแสอัดประจุสูงกว่าแรงดันไฟฟ้าศักย์สูงด้าน บวก

ที่อัตราการใหลของอากาศเดียวกัน เครื่องอัดประจุแบบเข็มที่มีขนาดปลายเข็ม 10° จะให้ กระแสอัดประจุดีกว่า เครื่องอัดประจุแบบเข็มที่มีขนาดปลายเข็ม 20° และเครื่องอัดประจุแบบเข็มที่ มีขนาดปลายเข็ม 10° ยังทำให้เกิดความเข้มข้นของจำนวนใอออนได้สูงกว่า เครื่องอัดประจุแบบ เข็มที่มีขนาดปลายเข็ม 20° และเครื่องอัดประจุแบบเข็มที่มีขนาดปลายเข็ม 10° มีสมรรถนะดีกว่า แบบปลายเข็ม 20° และที่แรงดันโคโรนาบวก ให้สมรรถนะดีกว่า แรงดันโคโรนานลบ เมื่อพิจารณา ค่าการทะลุผ่านของไอออนที่อัตราการไหลต่างๆ

Thesis Title Performance Analysis of a Corona-Wire Charger for Aerosol

Size Measurement

Author Mr. Pongsakorn Choopan

Degree Master of Engineering (Energy Engineering)

Thesis Advisor Asst. Prof. Dr. Nakorn Tippayawong

ABSTRACT

The objective of this thesis was to study the performance analysis of a corona wire charger for aerosol size measurement. The research had a designed and constructed prototype of a corona wire charger. In experimental, DC high voltage supply was specified within the range of positive and negative 1-10 kilovoltage. Also, the air flow rate was fixed at 1-10 litre/minute, and the needle corona chargers comparily studied were angled at 10° and 20°.

The experimental on the different angles of the needle corona chargers showed that at both positive and negative end of the 10° angle tip needle corona charger had generated in the charging zone the higher charging current than the 20° angle tip needle one. In addition, at the negative DC high voltage of both 10° and 20° angle tips, the DC high voltage was higher than the positive end.

At the same rate of the air flow, the 10° angle tip needle gave the higher level of the charging current than the 20° angle tip needle. Moreover, the higher ion concentration was generated by the 10° angle tip corona charger. The 10° angle tip needle had the better performance than the 20° angle tip. The better performance occurred at the positive corona voltage rather than at the negative corona voltage when consider the ion penetration at another air flow rate.