Chapter 2

Research Methodology

2.1 Data and Sample Selection

This dissertation concentrates on examining interdependencies among ASEAN
emerging stock markets (Indonesia, Malaysia, Philippines, Thailand and Vietnam),
incorporating with the international gold market. Nowadays, the time series data in
the financial markets are very plentiful. They are not only monthly or weekly, but also
daily data and even the tick data. Commonly, many time series data on macro
economics, financial markets, commodity markets, etc. can be conditionally accessed
via some providing agencies i.e., Datastream, Reuter, Bloomberg, etc. In addition,
time series data are provided from many sources via internet. For instance, we can
find a lot of time series data in stock markets over the world at

www.finance.yahoo.com and daily international gold prices in London gold market at

www.kitco.com. For some countries, the time series data on the stock markets may

not be published there, but it can be accessed from some bank’s websites i.e., daily
data of the Stock Exchange of Thailand can be downloaded from the website of the

Siam Commercial Bank Asset Management (www.scbam.com) and the trading data in

the Vietnam stock market are available on the website of the Vietnam Bank for

Investment and Development’s Securities Company (www.bsc.com.vn).
This study uses daily closing data in the 5 ASEAN emerging stock market

indexes that can be obtained from Reuters or other aforementioned sources, and daily
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international gold market prices from the P.M London Gold Fix that can be accessed

at www.kitco.com. Along with the daily time series data of the selected markets

obtained, other sources of secondary data and information relating to the study are
referred in the dissertation such as statistic data, articles, textbooks, theses, working

papers and so on.

2.2 Data Analysis Methods

To obtain the objectives of the study, we work on time series data of the
sample markets at both market price index series (the level series) and market returns
series. In the dissertation, we use various methods for time series data analysis in
terms of market linkages, cointegrations, volatility and volatility transmissions in the
financial markets. Specifically, in order to see how the selected market price indexes
are interlinked, methods are employed for the study including unit root test, Granger
causality test and Johansen cointegration technique.

On the other hand, regarding daily return series of the sample markets, we
examined volatility behavior in each market and volatility transmissions across the
sample market returns, so both univariate and multivariate GACRH models are
involved. For univariate volatility model, we select GARCH and GJR models, while
multivariate GARCH models such as CCC, VARMA-GARCH, VARMA-AGARCH
and DCC are applied for the study. Following the conventional approach, daily
returns of the international gold and ASEAN emerging stock markets, 7;, are
computed as the percentage of natural logarithmic difference in their daily prices i.e.,

1;, =100x[In(p; ,)—In(p; ,_1)], where p;, and p; .., are the closing prices of market i

on the days ¢ and #-7, respectively.
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2.2.1 Unit Root Test

When working on time series data, we need to check whether or not
time series data used in the study are stationary, the Augmented Dickey Fuller (ADF)
test is used for a set of the selected market price indexes. The ADF test for a unit root
uses the formulation given in (2.1). The unit root test is carried out under the null
hypothesis y = 0 against the alternative hypothesis of y < 0. If the null hypothesis in
the ADF test, ¥ = 0, can not be rejected, x;is non-stationary. However, if the null
hypothesis of a unit root in the first differences of the level series can be rejected,
these series are integrated of order one, denoted /(1). Therefore, it is sufficient for

performing cointegration tests for the level series.

p
Ax; = ag + ajtrend + yxe, + Yo A, + 2.1)
j=1

where Ax is the first difference of x;and p is the lag-length of the
augmented terms for x;.
2.2.2 Granger Causality Test
To see how the selected market price indexes can explain each other
Granger causality test (Granger, 1969) is employed to determine directions of
causality between the market pairs. Usually causal relations are tested both ways i.e.,

from x; to x, and vice versa as specified below,

n n
Xip = 20X+ D Bixy, i+ (2.2)
i-l i-1
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Xo ¢ = Zn:lixz,t—i + Zn:é‘ixl,t—i +é&, (2.3)
i=1 i=1

where, x;, and x,, are the market price indexes; ¢; f;, A and &; are
coefficients in the regressions; # is the lag length used; and ¢;, and ¢;,,; are assumed
to be uncorrelated innovations i.e., E(e;; , €, ;)= 0. A time series x; is said to
Granger-cause x; if it can be shown, through the overall F-test on lagged values of x;
and of itself, that those lagged values of x; will provide statistically significant
explanations about future values of x,. The Granger test can be applied to each pair of
variables only. Then, causal relations are inferred through the overall statistical
significance of coefficients of each equation Therefore, the null hypotheses of the test
are given as

Ho(l): B1=Po= ... = Ba=0 — x,, does not Granger-cause x;; for Eq.(2.2),

Ho(z): 01= 0= ... =8,=0 — x;, does not Granger-cause x, for Eq.(2.3).

The generalized F statistic used in the Granger causality test is written

as follows:

F _ (RSSR —RSSUR)/n
RSSy /(T —2n) 24)

where RSSk is the residual sum of squares in a restricted regression that
lagged terms of the exogenous variable are not included; RSSyr denotes the residual
sum of squares in an unrestricted regression, in which all lagged terms are included; »
is the lag length used; and T is the total number of observations in the time series data.
According to the two hypotheses defined above, four cases may occur:

(i) No rejection of Hy" and rejection of Hy® imply causality from X1¢ to x24, (i) No
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rejection of Hy® and rejection of Ho'" mean causality in the reverse direction, (iii) If
both hypotheses are rejected, meaning that there is a lead-lag relation between the two
variables, and (iv) If both can not be rejected, no Granger causality exists between the
variables.

Although the test is very straightforward, the lag length used in the
regression is unknown. To identify the number of lags, both the minimum Akaike
information criteria (AIC) and Schwarz criteria (SC) should be considered to identify
an appropriate lag length for each pair. Generally, more lags should be included, if the
number of observations is large enough.

2.2.3 Johansen Cointegration Technique

The Johansen (1988) and Johansen & Juselius (1990) test framework is
used for testing the presence of the long-run relationship between two or more /(1)
variables. If the test shows the presence of cointegrating relationships given by the
linear combinations between them, called the cointegrating vectors, it implies a long-
run equilibrium relationship. As a result, there exists the vector error correction model
(VECM) that measures speed of adjustment to the long-run equilibrium in the
cointegrated variables. The procedure of Johansen test begins with a vector

autoregressive (VAR) model of order p below

P
Xx=w+ ZAl.x,_i + & (2.5)

i=1

where x; is an (m x 1) vector of variables (x;,, X2, ..., X ), which are

m level series, w is a vector of constants, A; is a (m x m) matrix of coefficients and & is
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a vector of error terms, and p is the lag length in the variables in the system. If the
variables in the vector x; are integrated of order one, /(1), it implies that the linear
combination of one or more of these series may exhibit a long-run relationship among
them. This leads to using the Johansen (1988) and Johansen & Juselius (1990) method
for further explorations in the sample market price indexes in our study. The method

can be briefly expressed as follows

P
Ax = o+ Y TAx,, +1x.; + & (2.6)

i=1

where x; is a (m % 1) vector of the sample market price indexes, w is the
(mx1) vector of constant terms and ¢, is a vector of error terms. I';j denotes the (m xm)
matrix of coefficients, containing information regarding the short-run relationships
among the sample market price indexes. /7 are (m xr) matrix, reflecting the possible
long-run relationship between the sample market price indexes, where r is the rank
of IT so that » < m —1. The Johansen procedure is to decompose the matrix IT into
two (mx r) sub-matrices, a and f, such that [I=oaf". The matrix fis called the
matrix of cointegrating vectors, representing the possible long-run relationship
between the sample market price indexes, and a is defined as the matrix of error
correction coefficients that measure speed of adjustment in the cointegrated variables
to their long-run equilibrium. The Johansen technique is based on the maximum
likelihood estimation of a and f’, and the two computed statistics such as the trace
statistic and the maximum eigen-value statistic in order to test for the presence

of r cointegrating vectors in the systems. The trace statistic tests the null hypothesis of
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at mostq cointegrating vectors against the alternative hypothesis ofr =
n cointegrating vectors. Meanwhile, the maximum eigen-value statistic also tests for
the presence of 7 cointegrating vectors against the alternative hypothesis
of r+1 cointegrating vectors.
2.2.4 Symmetric Univariate GARCH Model

The autoregressive conditional heteroscedasticity (ARCH) model was
first invented by Engle (1982) and extended then by Bollerslev (1986) to become the
generalized ARCH (GARCH) model. The GARCH model is assumed that a positive

shock (&, >0) and a negative shock (&, <0) with an equal magnitude has the same

impact on the conditional variance, #,, The mean and variance specifications in

GARCH(p, g) model is written as follow

Ty ZE(’”; |lP[_]) + Et, Wlth gt|\P[—l 1 N(ﬂt’ht) (27)
P b q

=0 + o6+ Bh_;, (2.8)
j=1 j=1

where 7, is a market return series and &= r; - 4 1s the shocks to the market

returns; ¥.; denotes the past information available at time f#; z, =¢&,/./h, are the

standardized shocks to the market returns; /4, is the univariate conditional variance of
the market returns; a; denote the ARCH effects, implying the short-run effects of
shocks and f; denote the GARCH effects, indicating the contribution of such shocks
to long-run persistence (3 a; + > 5;). Bollerslev (1986) indicated thatw >0, a;> 0 for

Jj=1,...pand ;>0 for j= I,..., g are sufficient conditions for a positive conditional
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variance 4, >0, and Zle a; +Z§’.:1 S <1 is the necessary and sufficient condition for

the existence of the second moment. The simplest case is GARCH(1,1) model, i.e.,
h, =@ +a,e’, + Bh,_,, but has been most widely used in practice so in our study we the
GARCH(1,1) model.

To check the structural properties of the univariate volatility model, the

second moment and log-moment conditions. Jeantheau (1998) built the log-moment
condition for the GARCH(1,1) given by E(log(e,77] + 3,)) <0, which is sufficient

for the QMLE to be consistent. Since the log-moment condition is a weaker regularity

condition than the second moment condition, namely &, + f, <1. The log-moment
condition can be satisfied even when o, + 5, > 1.

2.2.5 Asymmetric Univariate GARCH Model
Behavior of volatility in finance tends to be larger as the stock market
index was decreasing than as it was increasing by the same magnitude. To capture
asymmetric effects, Glosten, Jagannathan and Runkle (1993) proposed an asymmetric
GARCH model, namely GJR. Variance equation in the GJR(p, ¢) model is formulated

as follows

V4 q
hy=a+ Y (a;+yl(e,_; <&+ Bk 2.9)
j=1 j=1

where w, a, f and y are estimated parameters and I: is an indicator
function taking the values of 1 if &.,< 0 (bad news) and zero, otherwise. As specified

in (2.9), impact of positive and negative shocks that have the same magnitude on the
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conditional variance /4, in the GJR model are different. We expect the estimated sign
of y to be positive, so that the negative shocks “bad news” have stronger impact than
positive ones.

Similar to the selection for the symmetric univariate GARCH(1,1)

model in our study, the GJR(1,1) specification is applied. Therefore, when ¢, ; is

positive, its effect to the volatility is aglz_l , however when ¢,; is negative, the total

effect of shocks to the volatility is (o + }/)8,2_1. The GJR(1,1) model is asymmetric if

v is significantly different from zero. Ling and McAleer (2002) established the
regularity condition for the existence of the second moment of the GJR(1,1) model

ie., at [+ y/2< 1, and the log-moment condition for the GJR(1,1) model i.e.,
E(log((et, + 7,1(n,))n} + B,)) < 0, which is sufficient for consistency and asymptotic

normality of the QMLE for GJR(1,1). The log-moment condition for the GJR(1,1)
model can be satisfied even when oy +y/2+ S, 21.

2.2.6 Multivariate CCC-GARCH and VARMA-GARCH

In recent years, the univariate GARCH model have been extended to
the multivariate GARCH (MGARCH) cases to examine the volatility spillovers as
well as the conditional correlations between the markets. As implied in Bauwens et
al.(2006), the spillover effects across markets are measured by lags in shocks and the
conditional variances of a market or the covariance of two markets, which appear
significantly in the conditional variance equation of other markets.

Generally, the default equation for the means in the MGARCH models

could be constant, or AR(p), or ARMA(p,q). In our study, the conditional mean
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equations of daily returns in the selected markets, specified in MGARCH models, can

be written as follows,

ru =E(ri |Yer) +en,  with £,|¥,_ ~ N(u,,h,) (2.10)

g, =4h,z with z,~iid(0,1).

it <it >

where i = [...s is the number of the sample markets and = I...n is the
number of observations; &;,= r; - u; are shocks to the market returns; r;, are return
series of the sample markets that are conditional on the past information (V)
available at time ¢, h;; are the univariate conditional variances of the market returns;
Z, =&, /\/E the standardized innovations to the market returns.

In our study, two constant conditional correlation MGARCH models,
namely VARMA-GARCH (Ling and McAleer, 2003) and VARMA-AGARCH
(McAleer et al., 2009) are employed in order to measure spillovers across the selected
markets and to capture the possible asymmetric effects of shocks to the conditional
variances. Since the constant conditional correlation (CCC) is maintained in both
VARMA-GARCH and VARMA-AGARCH models, we now take a view on how to
construct the CCC multivariate GARCH model of Bollerslev (1990). As defined in

(2.10), the conditional covariance matrix, H; , in the CCC model is written as follows,

H, = E(s,, |, )= E(D,z,z,D,) = D,E(z,z,)D, = D,RD, (2.11)

where D, =diag(\/h;) 1is a diagonal matrix of the univariate

conditional variances of the sample markets, R =E(z,z,)=D'H,D™' = (py) is a
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symmetric positive definite matrix that (pi) = (pw) With pu=1Vi=k (for i, k= 1,..., s).
Consequently, R is the constant conditional correlation matrix, p;  between different
pairs of the sample market returns. In the CCC model, Bollerslev (1986) assumed that

the univariate conditional variances for the return series, /4., follows a univariate

it

GARCH process as
h, =w, + Zaijgf,w + zﬁi/'hi,taj (2.12)

where i = ]...s i1s the number of the selected markets, so a;; denote the

ARCH effects and f;; the GARCH effects on the conditional volatility equations. In
the simplest case, the GARCH(1,1) model can be writeen as 4, = @ + &, + Bih, .

As specified in (2.12), the CCC model assumes that return volatility in
each market is independent from others, so there are no shock and volatility spillovers
across the markets. However, this assumption may not be realistic, particularly in the
context of international integration and market liberation. To capture possibilities of
the spillovers across markets, Ling and McAleer (2003) built the VARMA-GARCH
model that the lagged terms of shocks and volatilities of other markets are added in
the conditional volatilities of a market. As explained in (2.10) and (2.12) for the
parameters and notations, they are now continuously used, the multivariate conditional

variances of the VARMA-GARCH model can be expressed as,

s k

sk
hy = @; + 3, zazjgz%—j + 2 2 Bihi— (2.13)

i=1j=1 i=1j=1



22

2.2.7 Multivariate VARMA-AGARCH

As discussed in the GJR model, the existence of asymmetry in the
volatility is a highlighted property of the financial time series data that reflects
behavior of investors in responding to shocks. The asymmetry exists if the positive
and negative shocks with an equal magnitude have different effects on the conditional
volatility of a market. It is interesting to realize that both CCC and VARMA-GARCH
models assumes that effect of shocks on the conditional volatility is symmetric,
possible asymmetric effect is not taken into account. Consequently, McAleer et al.
(2009) introduced VARMA-AGARCH model, in which the CCC and VARMA-
GARCH models are nested within the VARMA-AGARCH. The multivariate

conditional variances of the VARMA-AGARCH model can be expressed as,

s | k k sk
hit = a)l' +Z Zal] + Z}/ijl(gl',l—j < 0):|£lz,t—] +Zzlgl]hl,t—] (2.14)

i=l| j=1 j=1 i=1 j=1

where /(1 ];,; < 0) is the indicator function that takes the values of 1 if
&= 0 (i.e, bad news) and zero, otherwise. It is obviously that the multivariate
equation in (2.14) is simplified to the univariate asymmetric case of Glosten,
Jagannathan and Runkle (1992) i.e., GJR model, if s=1/ (a single market only). If y; =
0 for all the cases, VARMA-AGARCH becomes VARMA-GARCH. The parameters
in (2.10), (2.13) and (2.14) can be obtained from the quasi maximum likelihood
estimator (QMLE), see Ling and McAleer (2003) and McAleer et al. (2009) for the

details.
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2.2.8 Multivariate DCC-GARCH
The assumption of the constant conditional correlations may often be
reasonable over shorter time periods. To relax the assumption of the constant
conditional correlations, Engle (2002) proposed the dynamic conditional correlation
(DCC) model, which is a generalization of the CCC model. The DCC model can be

expressed as follows

& | Wi~ N0, Hy) ,

Ht: DthDt (215)

Let H, be the conditional covariance matrix, D, =diag( /h,) a

diagonal matrix of the univariate conditional variance equations, R, the a conditional
correlation matrix. The conditional variance (h;) in the D, is assumed to follow a
univariate GARCH model as given in (2.12). The difference between DCC and CCC

models is that DCC model allows the conditional correlation matrix, R;, to be time
varying i.e., R={pjr}. The DCC estimation of conditional variances and correlations is

conducted through two stages, so that the estimation of time-varying correlation matrix
is easier. For instance, in the first stage univariate volatility parameters in (2.12) are

estimated for each return series, using GARCH model and so the standardized
shocks,z, = ¢, /4/h, , are obtained. In the second stage, the standardized residuals, z;,
obtained from the first stage are used to estimate the parameters of the dynamic

conditional correlations, g,. In our study, we employ the DCC(1,1) version of Engle

(2002), so the model can be written as follows
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Ri= {diag(qi)"*} qin: {diag(qu) "} = {pinsts (2.16)
Gy =(1-6,-6, );ik + 012 1212k -1 + O Gig 415 (2.17)

(fori, k=1,...,sand t=1,...,n)

Engle (2002) defined that ;l.k in (2.17) is the unconditional correlation

between z;, and z, that has unit variance, obtained from the first stage, and (2.16) is
used to standardize the matrix estimated in (2.17). 6; and 6, are parameters to be
estimated, if the estimates of #; and 6, are significantly different from zero, then
conditional correlation in the whole is not constant. On the contrary, if the estimates
of 8, and 6, are not significant, then g;, in (2.17) can be interpreted as the CCC
model. The DCC model is estimated using the maximum likelihood estimator (MLE).

Engle (2002) showed the log-likelihood function as

12 .
L= —EZslog(Zﬂ)+log IR, |+z,R 'z, (2.18)

t=1

It is assumed that z, in (2.18), the standardized residual series obtained

from the first stage, z, =¢,/4/h, , 1s normally distriduted with zero mean and variance,

R, (i.e., z;~ N(0O, R)). Interstingly, R, plays the roles as a variance matrix of the

standardized residuals and also as a correlation matrix of the residual series ¢;= 7y -

Hit.



