
Chapter 4 

Long Memory in Volatility of Stock Markets in South-East Asia  

 

 The long memory characteristic of financial market volatility is well known 

and has important implications for volatility forecasting. Some evidences and 

literatures of long memory are presented in this chapter. There have been a number of 

researches investigating whether long memory of volatility can improve volatility 

measures and forecasts.  

 Fractionally integrated is the simplest linear model which is used and tested in 

several literatures for capturing long memory in volatility. However, there are several 

issues with the fractional differencing operator. The application of the fractional 

differencing operator requires a very long build-up period which results in a loss of 

many observations. Moreover, these classes of fractionally integrated models are able 

to reproduce only the unifractal type of scaling.  

Another simple model for capturing long memory property in the process is 

the Heterogeneous Autoregressive (HAR) model by Corsi (2009). This model 

becomes more preferable due to several advantages, such as its capability of 

multivariate modelling and apparent economics interpretation.   

However, to provide theoretical backgrounds and comparison between the two 

models, this chapter introduces and estimates both from the original paper ‘Long 

Memory in Volatility of Southeast Asia Stock Markets’ by Chaiwan et al. (2009) 

presented at the 6th International Conference on Business and Information 2009. The 

full paper is presented in Appendix B. 
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Abstract 

 

For several daily financial return series, most empirical literatures reveal that 

volatility has a long memory property. Consequently, an advanced model  -- the 

fractionally integrated ARFIMA model which allows the intermediate degrees of 

volatility persistence --, is needed. The purpose of the paper is to estimate the long 

memory models in volatility of index returns of four South-East Asian stock markets. 

Furthermore, the time-dependent heteroskedasticity of the returns is described by the 

autoregressive fractionally integrated moving average with a generalized 

autoregressive conditional heteroskedasticity (ARFIMA-GARCH) models. The 

ARFIMA-FIGARCH, ARFIMA-FIEGARCH models are highly considered. The 

Heterogeneous Autoregressive (HAR) model of Corsi (2009) also used to capture 

long memory. Those several long memory models then are seriously taken into 

account as to how the performances of those several models for asset returns and 

volatility measures reveal. Our results show the presence of long memory process in 

volatility of all series. The ARFIMA-FIEGARCH performs excellently in estimating 

the volatility of all series as well. 
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4.1 Introduction 

In financial investment, the investors, traders, fund managers, etc., certainly 

encounter changes with their own asset prices. As the price fluctuation depends on 

several sources of unexpected news, the rate change of asset prices is commonly 

defined as volatility in finances. At any event, measuring and predicting volatility is 

the crucial task in financial analysis.  

The first models for long memory in mean were introduced by Granger and 

Joyeux (1980), and Hosking (1981). Most empirical evidences show the long memory 

process in volatility. The fractionally integrated models are widely used and become 

popular in financial time series analysis. Granger (1980) proved that long memory 

process, which the autocorrelation of unknown shocks decays slowly, can arise when 

short memory -- the memory decays exponentially fast --, is aggregated. As the 

persistence of shocks depends on several sources, it reflects on volatility which 

indicates a long memory property. According to Ding, Granger, and Engle (1993), the 

volatility tends to change quite slowly at times, and the effects of unknown shocks 

can take a considerable time to decay. Therefore, models for long memory are of great 

interest in financial work. Again, in short memory, the exponential decay is too fast to 

describe the data. Consequently, it is necessary to have a model that allows for 

intermediate degrees of volatility persistence. In the conditional mean, Granger and 

Joyeux (1980), and Hosking (1981) proposed that the autoregressive fractionally 

integrated moving-average (ARFIMA) specification fill the gap between short and 

complete persistence. This model captures the short-run behavior of the time-series by 

the autoregressive moving-average (ARMA) parameters. Thus the fractional 

differencing parameter dL)1( −  is added to model the long-run dependence in the 
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ARFIMA model. The characteristic of this long memory process is that the 

autocorrelation function has a hyperbolically decaying shape. In other words, the 

autocorrelation of shocks decays slowly to zero. Eventually, in the conditional 

variance, Baillie, Bollerslev and Mikkelsen (1996) introduced the fractionally 

integrated autoregressive conditional heteroskedasticity (FIGARCH) model which 

relates to financial volatility dynamics and allows for the long memory in the 

conditional variance. Ling and Li (1997a) extended the ARFIMA process to an 

autoregressive fractionally integrated moving average with GARCH model 

(ARFIMA-GARCH), which has a fractionally integrated conditional mean with the 

GARCH to describe time-dependent heteroskedasticity. An apparent of long range 

dependence in financial asset volatility introduced by Robinson and Hidalgo (1997) 

could be modeled by long memory. Bollerslev and Mikkelsen (1999) have confirmed 

the assumption that long memory models would yield the most accurate empirical 

out-of-sample volatility forecasts.  

From this point of view, there are a number of studies using long memory 

models for both the daily returns of assets and the high-frequency ones. The true 

volatility, known as realized volatility (RV), is found in the model that a fractionally 

integrated process can highly explain the slow decay in the autocorrelations of RV. 

The empirical studies for RV show that fractionally integrated processes are discussed 

in this section. Alizadeh, Brandt, and Diebold (2002) showed that a sum of AR(1) 

component is likely to have long memory process. Pong, Shackleton, Taylor, and Xu 

(2004) showed that a sum of AR(1) component accurately forecasted currency 

volatility. The literatures on RV are growing rapidly. McAleer and Medeiros (2008) 

show an excellent review of how to perform modelling and forecast volatility of their 
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several techniques of volatility estimation, and hence the strengths and limitations of 

the various approaches also widen their points of view.  

In this paper, we highly consider the long memory process, the fractionally 

integrated ARFIMA process with the GARCH specification (ARFIMA-GARCH) 

underlying the concept model of Granger and Joyeux (1980), Hosking (1981), Baillie 

(1996), Baillie, Bollerslev and Mikkelsen (1996), and Long and Li (1997a). We 

investigate the dynamic behavior of the daily returns, the ARFIMA process in the 

conditional mean as well as in the conditional variance. The data used in this paper 

are the daily index returns data, under the assumption of time-varying conditional 

heteroscedasticity. We take into account the index returns in South-East Asian stock 

exchanges, namely Indonesia, Malaysia, Thailand, and Singapore in so far as they are 

available from DataStream. The different models of the ARFIMA with GARCH type 

models are also considerable for comparison purposes including of ARFIMA-

FIGARCH, and ARFIMA-FIEGARCH models. 

 

4.2 Model Specifications 

The following section describes the models that we implement in stock market 

returns of South-East Asian countries. The time series models for the conditional 

volatility such as the (generalized) autoregressive conditional heteroskedasticity 

(ARCH and GARCH), the fractionally integrated models (FIGARCH and 

FIEGARCH) of Baillie, Bollerslev and Mikkelsen (1996), and Bollerslev and 

Mikkelsen (1996) are discussed below. Furthermore, the alternative long memory 

conditional mean and conditional volatility such as the Heterogeneous Autoregressive 

(HAR) model of Corsi (2009), and the ARFIMA-GARCH model of Long and Li 
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(1997a) are also reviewed by following subsequences; we first review the 

specifications of the conditional mean equation. Then, some contributions in the 

conditional variance equation will be presented. 

 

Conditional Mean equation 

Considering a univariate return series{ ty } 

 

tttt IyEy ε+= − )( 1       (4.1) 

 

where 1−tI  is the information set at time t-1. .)(.E denotes the conditional expectation 

operator. tε  is the disturbance term, with ,)(,0)( 22
εσεε == tt EE and 0)( =stE εε  

for all st ≠ and for all 0≠τ . 

The mean equation has been modelled in several ways. The most well-known 

specifications are the Autoregressive (AR) and Moving Average (MA) models. 

 

ARMA 

We first describe an autoregressive moving average (ARMA) process. This 

process is an underlying from which a generalized autoregressive conditional 

heteroskedaticity (GARCH) is derived. The ARMA process is presented as a white 

noise process )( tε . By constructing a white noise process, the basic properties of white 

noise are used as mention in equation (4.1). 

An autoregressive model with p lags, AR(p), is given by 
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where μ is the mean, φ is the weight. An AR(1) is referred to a first-order one process 

which volatility based upon only the previous value of ty . 

A moving average model or MA(q), is given by 
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      (4.3) 

 

where μ is the mean, φ is the parameter. it−ε  and tε  are the previous and current 

weighted average values of a white noise disturbance term, respectively. This linear 

combination of white noise processes makes a variable ty dependent on the previous 

and current values of a white noise disturbance term. 

A model for predicting future values of a variable ty  is an autoregressive 

moving average model, or ARMA(p,q), given by 

 

qtqtttptt yyy −−−− −−−+++= εθεθεφφ ...... 11111   (4.4) 

 

This equation is the linear combination between a variable ty  and its own 

previous values (AR) plus the previous and current values of a white noise 

disturbance term (MA).  
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However, literatures also have shown that ty  can exhibit significant 

autocorrelation between observations widely separated in time. In such a case, ty  has 

long memory or long-term dependence.  

Considering the following process { ty } 

 

tt Ly εφ )(=        (4.5) 

 

where ,,1,)(
0
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= i
i

i

i
i LL φφφφ  and tε  has finite kurtosis. A process in 

equation (4.5) generates a linear process if tε  is a strict white noise and the nonlinear 

if not.  

The long memory could be modelled by a fractionally integrated ARMA 

process, so called ARFIMA process. 

 

ARFIMA 

Granger (1980) and Hosking (1981) initially developed a well-known class of 

linear dependent processes; the autoregressive fractionally integrated moving average 

(ARFIMA (p,d,q) model). An ARFIMA process, { ty } is defined by 

 

tt
d LyLL εθφ )()1)(( =−      (4.6) 

 

where ,5.0<d  tε  is a strict white noise sequence with zero mean and variance 2
εσ , 

L is the backshift operator 
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p
ptt LLLyLy φφφ −−−== − ...1)(, 11      (4.7) 

q
q LLL θθθ −−−= ...1)( 1      (4.8) 

 

Equation (4.7) and (4.8) are polynomials of degrees p and q, respectively. 

dL)1( −  is the fractional difference operator defined by the binomial series which 

accounts for the long memory of the process. The lag operator L shifts any process 

backwards by one time period, ,1−= tt yLy  while the differencing parameter d is 

between 0 and 1 for volatility applications. The filter then represents fractional 

differencing which is defined by the binomial expansion as 

 

...
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)1(1)1( 32 +
−−

−
−

+−=− LdddLdddLL d  (4.9) 

 

Afterward, more complex models are produced by specifying an ARMA filter 

in a time series process { ty } in a short memory input sequence (see Palma and 

Zevallos (2001)). The class of ARMA-GARCH models can be obtained when tε  

follows a GARCH process as will be presented next. 

 

Conditional Variance equation 

ARCH 

Engle (1982) proposed the autoregressive conditional heteroskedasticity of 

order q, or ARCH (q), defied as  
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where 0,0 ≥> αω  to ensure 0>th  or strictly positive conditional variance. The 

ARCH effect α is the dependence in the condition variance or the short run 

persistence of shocks. 

 

GARCH 

Bollerslev (1986) and Taylor (1986) proposed the Generalized ARCH 

(GARCH) model allowing for an infinite number of squared errors to influence the 

current conditional variance. The next period’s variance can be forecasted in effect of 

which:- 

- Weight average of the long run average variance (mean) 

- The variance predicted for the present period (GARCH) 

- Information about volatility during the previous period that is the 

squared residual (ARCH) 

The GARCH (p, q) model is given by 
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where 0>ω  and the constraints 0≥α  and 0≥β  are needed to ensure 0>th  or 

strictly positive conditional variance. This model assumes that the positive shocks 
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( 0tε > ) and negative shocks ( 0tε < ) have the same impact on the conditional 

variance. 

The α  is the ARCH effect which indicates the short run persistence of shocks 

and β  is the GARCH effect which indicates the long run persistence of shocks, 

namely βα + .  

 

GJR 

Glosten, Jagannathan, and Runkle (1992) proposed the model to accommodate 

differential impact on the conditional variance between positive and negative shocks, 

here after the GJR model, given by 
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where the parameters 0,0,0 ≥+≥> γααω and 0≥β  are sufficient conditions to 

ensure positive in the conditional variance, 0>th . )( itI −ε  is an indicator function 

which equals 1 if it−ε < 0 and 0 otherwise. The coefficient γ  indicates the asymmetric  

effects, the positive shocks and negative shocks on conditional variance. In practical, 

the expected value of γ  for financial time series data is greater than or equals to 0 

( 0≥γ ) because negative shocks (decreases in returns) increase volatility (risk), 

namely αγα ≥+ . The parameter γ  can measure the short run persistence of shocks 

by 
2
γα +  and the long run persistence of shocks by 

2
γβα ++ . It is important that 



 74

the GJR model does not present leverage which negative shocks increase volatility 

and positive shocks decrease volatility in the same size effects. 

In the conditional volatility models, the parameters are estimated by the 

maximum likelihood estimation method to obtain Quasi-Maximum Likelihood 

Estimators (QMLE) under normality of the conditional shocks or standardized 

residuals assumption. The QMLE is efficient only if the conditional shocks are 

normal, or it is the MLE. Ling and McAleer (2003) shows the QMLE for 

GARCH(p,q) is consistent  if the second moment of tε  is finite. As mentioned in Ling 

and Li (1997) and Ling and McAleer (2003), the necessary and sufficient condition 

for the existence of the second moment of tε  is 1<+ βα  for GARCH(1,1). 

 

EGARCH 

Nelson (1991) introduced the Exponential GARCH (EGARCH) model given 

by 

 

)(log)log(
111

jt

p

j
jit

q

i
iit

q

i
it hh −

=
−

=
−

=
∑∑∑ +++= βηγηαω   (4.13) 

 

where the parameters α , β , and γ  are different from those of GARCH and GJR 

models. The t iη −  and t iη − capture the size and sign effects of the standardized shocks, 

respectively. The asymmetry is indicated by γ , if 0=γ there is no asymmetry, if 

0<γ , and γαγ −<<  leverage is exist which negative shocks increase volatility and 
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and positive shocks decrease volatility in the same size effects. This model allows 

asymmetric and leverage effects.  

These stationary GARCH and EGARCH models have a short memory 

property. In empirical studies of Dacorogna, Müller, Nagler, Olsen, and Pictet (1993), 

Ding et al. (1993), Bollerslev and Mikkelsen (1996) give evidence that their 

theoretical autocorrelations of conditional variances decay slowly, so a long memory 

model is appropriate. 

At this instant, a number of specifications for the long memory process are 

reviewed by describing in three combinations of these two elements: short- or long-

memory filter and short- or long-memory input 2
tε as follow: 

 

Long-memory input, short-memory filter 

FIGARCH  

Baillie (1996) and Baillie, Bollerslev and Mikkelsen (1996) investigated a 

model with long-memory input for the conditional variance ht, by inserting the 

additional filter dL)1( −  and short-memory filter, ARMA, and then making the 

GARCH more general known as the fractional integration (FI) GARCH model. The 

FIGARCH(1,d,1) model is defined by 
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FIEGARCH  

Bollerslev and Mikkelsen (1996) found that the fractionally integrated 

exponential GARCH (FIEGARCH) model performs better than FIGARCH model. 

From the EGARCH model of Nelson (1991), the returns are assumed to have 

conditional distributions that are normal with constant mean and with variances. The 

FIEGARCH(1,d,1) model is defined by 
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])[()( 112111 −−−− −+= tttt zEzzzg θθ     (4.16) 

 

where tω  and th  denote conditional means and conditional variance respectively. 1θ  

is a sign effect and 2θ is a size effect. And the standardized residuals are 

 

ttt hez /=        (4.17) 

 

Short-memory input, long-memory filter 

ARFIMA-GARCH  

Ling and Li (1997) proposed a fractionally integrated autoregressive model 

with conditional heteroskedasticity, ARFIMA(p,d,q)-GARCH(r,s).  

The specifications in the conditional mean equation, ty displays long memory, 

or long-term dependence which could be modelled by a fractionally integrated 

ARMA process, or ARFIMA process initially introduced by Granger (1980) and 

Granger and Joyeux (1980). The ARFIMA(p,d,q) is given by 
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ttt
d LyLL εθμφ )()()1)(( =−−     (4.18) 

 

This is discrete time process with )(Lφ  as in equation (4.5), tz  as in equation 

(4.17) with standard normal distribution and the GARCH model as  
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If ,5.0<d  and ,1
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i βα then { ty } is invertible and stationary. Palma and 

Zevallos (2001) showed that in ARFIMA-GARCH model, the data have long memory 

if    0 < d < 0.5.  The squared data have intermediate-memory if 0 < d < 0.25 and long 

memory if 0.25 < d < 0.5. An ARFIMA-EGARCH gives the same conclusions. 

 

HAR  

Corsi (2009) proposed the Heterogeneous Autoregressive (HAR) model as an 

alternative model for realized volatilities. The HAR(h) model is based on the 

following process in the mean equation (see Chang et al. (2009)). 
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where typical values of h in financial time series are 1 for daily, 5 for weekly, and 20 

for monthly data that referred to HAR(1), HAR(1,5), and HAR(1,5,20), respectively. 

The models of HAR(1), HAR(1,5), and HAR(1,5,20) are given by 

  

ttt yy εφφ ++= −121       (4.21) 

tttt yyy εφφφ +++= −− 5,13121      (4.22) 

ttttt yyyy εφφφφ ++++= −−− 20,145,13121    (4.23) 

 

Long-memory input, long-memory filter 

ARFIMA-FIEGARCH  

This model is the combination of ARFIMA filters and conditionally 

heteroskedastic input with long-range dependency such as FIEGARCH model. 

Eventually, we obtain ARFIMA-FIEGARCH model. Robinson and Hidalgo (1997), 

and Palma and Zevallos (2001) showed the similar type of result for this context 

which the squares of the input sequence { tε } has a long memory with filter 

parameter 5.0* <+= yddd ε , then the process { ty } has long memory. εd is the 

differencing parameter of long-memory input, FIEGARCH, and yd is the differencing 

parameter of long-memory filter, ARFIMA, where 5.0,0 << yddε . However, they 

concluded that the results will hold when the underlying distribution of the input error 

sequence is non-Gaussian but has finite kurtosis.  
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4.3 Data and Estimations 

In this section, we will explain the data set that are analyzed and the way to 

generate a daily volatility time series.  

 

4.3.1 Data 

The time-series data used in this paper are daily closing prices for four 

stock markets in South-East Asia, namely JKSE (Indonesia), KLCI (Malaysia), SETI 

(Thailand), and STI (Singapore) available on DataStream. The variable names are 

summarized in Table 4.1. We select these stock markets from the index values. Those 

are very high values and potential investment alternatives compared with other 

markets among South-East Asian countries. The index values of each market from 

Bloomberg are shown in Figure 4.1. The latest stock exchange founded in 1999 is 

Singapore Exchange (SGX), therefore the data are collected at that starting time. We 

consider for a long time period from September 1, 1999 to April 27, 2009, giving a 

total of 2,519 return observations. Each stock market index is calculated in the local 

currency as IDR, MYR, THB and SGD standing for Rupiah (Indonesia), Ringgit 

(Malaysia), Baht (Thailand), and Singapore dollar (Singapore), respectively.  

 

4.3.2 Estimations 

First, we adjust the closing price to obtain the returns for each market by 

taking logarithmic different. The daily returns are employed in modelling volatility of 

index returns because the yesterday information would be significant in explaining 

today prices changes. The daily data can capture the different responses on news that 

cause the volatility clustering (see Engle (1990)). There are several reasons to use 
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daily data and the rationale to employ daily data in modelling volatility transmission 

are mentioned in McAleer (2009), and McAleer and da Veiga (2008a). The 

continuously compounded returns at time t are calculated as follow: 

 

100*)log(
1−

=
t

t
t p

p
r                    (4.24) 

 

where pt is the index price at time t. pt-1 are the index price at time t-1. The plots of the 

daily returns for all series are shown in Figure 4.3.  

The plots show that all returns have constant mean but the time-varying 

variance. The dramatic changes in JKSE and SETI from up trend to down trend 

evidence by the plots of the price changes in Figure 4.2 imply that the returns of JKSE 

and STI are more volatile than those of the KLCI and SETI. However, all stock 

markets have practically the same trend over a period of time since 1998 and 

changing overtime. Then, an appropriate model is necessary to estimate. 

Second, we test all daily time-series returns for the stationary by using 

Augmented Dickey-Fuller (ADF) test from the econometric software package EViews 

6.0. Table 4.2 shows the unit root test which all series of stock market index returns 

are stationary at level because the ADF test statistics of all series reject the null 

hypothesis which the series are unit root at the 1% level of critical value equals           

-3.4327. These empirical results allow the use of all return series data to estimate the 

conditional volatility models. 

Third, we investigate the standard descriptive statistics of the daily time-

series data, provided in Table 4.3. From Table 4.3, we can summarize as follows: 



 81

First, All series have similar constant means at close to zero.  Second, the maximum 

values of percentage changes of index returns range approximately between 4.5% for 

KLCI and 10.5% for SETI. And, the minimum values of percentage changes of index 

returns range approximately between -8.9% for STI and -16.0% for SETI. Finally, all 

series exhibit the clustering as is the common stylized facts for financial returns. The 

high degree of kurtosis is displayed. This excess kurtosis indicates a fat-tailed 

distribution compared to a standard normal distribution with kurtosis 3 and similar for 

all series. The Jarque-Bera test strongly rejects the null hypothesis of normally 

distributed returns. Then, an appropriate time-series model is needed. 

Then, we estimate the various models described in the previous section. 

We take into account as to compare how the performance of those several models for 

volatility measures. The univariate long memory conditional mean and conditional 

volatility models are estimated under the assumption that the returns follow a t-

distributional because this distribution performs far better than normal distribution 

(see McAleer and da Veiga (2008b)). The auto-correlation function plot (ACF) is 

used to identify the orders of an ARMA process for ARFIMA filters in ARFIMA-

GARCH, ARFIMA-FIGARCH and ARFIMA-FIEGARCH models, and then we 

obtain an appropriate model fitted to the data. The empirical results which evidence 

the correlogram of all series in Table 4.4 – 4.7 allow to model the returns as a 

stationary ARMA(1, 1) process as the basis in the univariate long memory conditional 

mean and conditional volatility models. McAleer and Medeiros (2008) reviews the 

fact that different autoregressive structures are present at each time scale. In this 

paper, the alternative long memory HAR(h) models are estimated together with the 
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univariate conditional volatility models including GARCH, GJR, and EGARCH 

models to capture long run persistence of  shocks. 

Finally, we monitor the performance of the specifications by optimizing 

the information criterion of either Akaike (1974) or Schwarz (1978), denoted as AIC 

and SIC, respectively. Those criteria are given as 

 

AIC = 
n
k

n
LogL 22 +−       (4.25) 

SIC = 
n

k
n

LogL )log(22 +−       (4.26) 

 

with the MLE for a model that has k parameters estimated from n observations. As the 

SIC criterion consistently estimates the order p and q of a GARCH (p,q), then SIC 

may be preferred to AIC. In this paper, we consider both values of AIC and SIC 

across models. In addition, the p-value tests are used to identify the hypothesis that 

the variable is zero, i.e is not included in the model. 

 

4.4 Empirical Results 

In this section, we report the estimations of those models as mention in the 

previous section. The fitted models and volatility modelling performance of the 

models are also indicated at last. Table 4.8, 4.9, 4.10, and 4.11 summarize the 

estimations from GARCH, FIGARCH, FIEGARCH and ARFIMA-GARCH type 

models using 2,519 daily return observations of stock market indexes in South-East 

Asia, namely JKSE (Indonesia), KLCI (Malaysia), SETI (Thailand), and STI 

(Singapore), respectively. Furthermore, Table 4.12, 4.13, and 4.14 summarize the 
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estimations from the alternative long memory HAR(h) models -- HAR(1), HAR(1,5), 

and HAR(1,5,20) for those of stock market indexes, respectively. The parameters are 

typically estimated using the maximum likelihood estimation (MLE) method. We 

employed the student t distribution and the result of descriptive statistics show the 

high observed kurtosis. The student t distribution parameters are indicated by df in the 

Table 4.8 – 4.14, they are significantly different from zero at 5% level. The empirical 

results are divided into three subsequences as follows: 

 

4.4.1 FIGARCH Models 

The results showing the maximum likelihood estimates of d from 

FIGARCH model are 0.32, 0.31, 0.52, and 0.43 for JKSE, KLCI, SETI, and STI, 

respectively which are less than 0.5. As the t-ratios of the estimations are not close to 

zero, the null hypothesis d = 0 is rejected by the process which exhibits short memory, 

the ARCH and GARCH model. Consequently, the null hypothesis d = 1 which 

indicates that an integrated process is not appropriate, is ipso facto rejected. Therefore 

the estimations of parameters d which are significantly different from zero at 5% level 

show a stationary (d < 0.5) and the existence of long memory properties for JKSE, 

KLCI, and STI, excluding SETI, are not significantly different from zero. From 

FIEGARCH model, the estimates of d are 0.035, 0.033, 0.034, and 0.064 for JKSE, 

KLCI, SETI, and STI, respectively which are less than 0.25. All of them are 

significantly different from zero at 5% level for KLCI, SETI, and STI, and at 10% 

level for JKSE. The FIEGARCH model shows asymmetric effects and also leverage 

terms, which negative shocks increase volatility and positive shocks decrease 
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volatility in all series. All over again, these empirical results clearly show a stationary 

and the long memory property of volatility by FIGARCH and FIEGARCH models.  

An appropriate model fitted to the data are criteria by measuring 

goodness of fit as mentioned before (AIC and SIC). The GARCH specifications of the 

condition variance, judged by the AIC and SIC criteria, are far inferior to those of 

FIGARCH and FIEGARCH. However, involving FIGARCH and FIEGARCH could 

not obviously be indicated by the quality. Eventually, according to some ARFIMA-

GARCH type models, we find long memory process in the mean and in the volatility.  

 

4.4.2 ARFIMA-GARCH Models 

For long-range dependence ARFIMA-GARCH models, we find out the 

stationary ARMA process based on the ACF and PACF plots in Table 4.4 – 4.7, it is 

not clear what model is most appropriate for all series. The possibilities include an 

ARMA process with an autoregressive component of level 1, AR(1) and a moving 

average of 1, MA(1) for JKSE and KLCI, AR(2) and MA(2) for SETI, and AR(0) and 

MA(0) for STI. Based on AIC and BIC criteria, and p-value to test for the 

significantly different from zero of the variable, the best fit for JKSE and KLCI series 

is an ARFIMA(1,1)-FIEGARCH(1,d,1) plus leverage term, with approximately d* = 

0.06 which are less than 0.25 in both series and most estimates are highly statistically 

significant at 5% level. For SETI, the best fit is an ARFIMA(2,2)-FIEGARCH(1,d,1) 

plus leverage term, with approximately d* = 0.09 which is less than 0.25 and also 

most estimates are significantly different from zero at 5% level. For STI, the best fit is 

an ARFIMA(0,1)-FIEGARCH(0,d,1) plus leverage term, with d* = 0.18 and all 

estimates are significantly different from zero at 5% level. These results show that the 
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long memory models are preferred to short memory for volatility estimation in all 

index return series. The ARFIMA-FIEGARCH model performs far better for 

volatility modelling.  

 

4.4.3 HAR Models 

Table 4.12 – 4.14 show the estimations of GARCH(1,1), GJR(1,1), and 

EGARCH(1,1) for the HAR(1), HAR(1,5), and HAR(1,5,20) of stock indexes in 

South-East Asia, respectively. In the conditional mean equation of HAR(1,5), the 

estimates for all series; JKSE, KLCI, SETI, and STI, are statistically significant. 

However, the estimates of HAR(1) for JKSE, KLCI are statistically significant, those 

of HAR(1,5,20) for all series are not statistically significant.  So, the long memory 

properties of the data are captured adequately. In the conditional variance equation, 

the results would be given by dividing into JKSE, KLCI, SETI, and STI as following; 

the empirical results for JKSE suggest that the short run persistence of shocks lies 

between 0.156 and 0.210, while the long run persistence is 0.923 for HAR(1) and 

0.897 for HAR(1,5). The magnitude of asymmetric effects are evaluated by GJR(1,1) 

model. The estimated asymmetry coefficients are 0.242 and 0.195 for HAR(1) and 

HAR(1,5), respectively. They are positive and significant that would indicate the 

deceases in JKSE (or negative shocks) increase volatility. The results from 

EGARCH(1,1) show each of the estimates is statistically significant for the HAR(1) 

and HAR(1,5) models. The size effect,α , being insignificant and the sing effect, 1θ , 

being negative for both models, indicate the asymmetric effects but no leverage.  

The empirical results for KLCI suggest that the short run persistence of 

shocks lies between 0.118 and 0.166, while the long run persistence is 0.998 for 
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HAR(1) and 0.991 for HAR(1,5). The magnitude of asymmetric effects are evaluated 

by GJR(1,1) model. The estimated asymmetry coefficients are positive and 

statistically significant for HAR(1) and HAR(1,5), namely 0.076 and 0.065. This 

result could be interpreted the deceases in KLCI increase volatility. The results from 

EGARCH(1,1) show each of the estimates is statistically significant for the HAR(1,5) 

model. The size effect,α , being insignificant and the sing effect, 1θ , being negative, 

indicate the asymmetric effects but no leverage. 

The empirical results for SETI suggest that the short run persistence of 

shocks lies between 0.114 and 0.164, while the long run persistence is 0.975 for 

HAR(1) and 0.959 for HAR(1,5). The magnitude of asymmetric effects are evaluated 

by GJR(1,1) model. The estimated asymmetry coefficients are positive and 

statistically significant for HAR(1) and HAR(1,5), namely 0.094 and 0.117. So, the 

deceases in SETI increase volatility. The results from EGARCH(1,1) show each of 

the estimates is statistically significant for HAR(1) and HAR(1,5,20) models. The size 

effect,α , being insignificant and the sing effect, 1θ , being negative, indicate the 

asymmetric effects but no leverage. 

Lastly, the empirical results for STI suggest that the short run persistence 

of shocks lies between 0.096 and 0.115, while the long run persistence is 0.993 for 

both HAR(1) and HAR(1,5) models. The magnitude of asymmetric effects are 

evaluated by GJR(1,1) model. The estimated asymmetry coefficient is positive and 

statistically significant for HAR(1) and HAR(1,5), namely 0.083 and 0.120, 

respectively. The deceases in STI increase volatility. There are no evidences for the 

EGARCH(1,1).  
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Overall, in comparison with the HAR(1) model in all series; JKSE, 

KLCI, SETI, and STI, the estimated asymmetry coefficients for GJR(1,1) model are 

extremely statistically significant for the HAR(1,5). Therefore, GARCH(1,1) and 

GJR(1,1) for HAR(1,5) models are preferable. Therefore, the long memory properties 

of the data are captured adequately and the conditional volatility is sensitive to the 

long memory of the conditional mean specifications. 

 

4.5 Concluding Remarks 

In this paper, we consider the different time-varying volatility models and 

investigate the long memory property in volatility. Most empirical evidences show 

that volatility has a long memory property, as the result the fractionally integrated 

models are used in financial time series analysis. For comparison purpose, we apply 

both standard conditional volatility model, GARCH model, fractionally integrated 

models, FIGARCH, FIEGARCH, the ARFIMA with GARCH models including 

ARFIMA-GARCH, ARFIMA-FIGARCH, and ARFIMA-FIEGARCH models and the 

alternative long memory model, the Heterogeneous Autoregressive (HAR) model. 

These univariate conditional volatility models are applied in the paper time-series data 

which are daily closing prices for four stock markets in South-East Asia, namely 

JKSE (Indonesia), KLCI (Malaysia), SETI (Thailand), and STI (Singapore) from 

September 1, 1999 to April 27, 2009, giving a total of 2,519 return observations, as 

available on DataStream.  

Our finding can be summarized as follows. First of all, our estimation results 

show that the fractional integration that apparently show the long run persistence of 
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shocks in volatility of all index returns. Therefore the results show that the volatility 

has the long memory property.  

Second, for the performance of various models, a model for the volatility of 

the set of data is selected by comparing the values of AIC and SIC across models. The 

results suggest that the fractionally integrated models for long memory are preferred 

to conditional volatility models, GARCH models. Especially ARFIMA-FIEGARCH 

model is superior to ARFIMA-FIGARCH and ARFIMA-GARCH models. 

Third, the HAR model is used to confirm the long memory properties in the 

data. The empirical estimates indicate the GARCH, and GJR models are fit the data 

very well. Typically in financial time series, short and long run persistence of shocks 

are established in all index returns. In addition, the estimates in stock indexes, 

GARCH(1,1) and GJR(1,1) for the HAR(1,5) models are preferable. Therefore, the 

long memory properties of the data are captured adequately and the conditional 

volatility is sensitive to the long memory of the conditional mean specifications. 

Finally, this paper considers only model-based volatility measures from the 

univariate conditional volatility models, the fractionally integrated and the alternative 

long memory models. Using more long term information from financial time series 

data by including exogenous regressors such as volume may lead to an increased 

accuracy volatility modelling. Moreover, the multivariate conditional volatility and 

multivariate in long memory models to capture both asymmetric spillover effects and 

long memory from the return shocks of financial assets in the portfolio would be 

appropriate for further discussion.  
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Table 4.1  Summary of stock index names 

Indexes Names 

JKSE Jakarta Composite Index 

KLCI Kuala Lumpur Composite Index 

SETI Stock Exchange of Thailand Index 

STI Straits Times Index 
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Table 4.2  ADF Test of a Unit Root in all series 

Returns  Coefficient  t-statistic 

JKSE  -0.8708  -44.0375 

KLCI  -0.8532  -43.2910 

SETI  -0.9287  -46.7129 

STI  -0.9799  -49.1349 
Note: The null hypothesis θ  = 0 is tested for stationary if reject. 
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Table 4.3  Descriptive Statistics of all index returns 

 JKSE KLCI SETI STI 

Mean 0.0405 0.0097 0.0030 -0.0066 

Maximum 7.6231 4.5027 10.5770 9.5324 

Minimum -10.9540 -9.9785 -16.0632 -8.9151 

Std. Dev. 1.5129 0.9750 1.5071 1.3727 

Skewness -0.6622 -0.7459 -0.7625 -0.3749 

Kurtosis 9.2069 11.6161 12.7928 8.3114 

Jarque-Bera 4227.6 8025.5 10309.7 3020.0 
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Table 4.4  Correlogram of JKSE (Indonesia)  

 
Notes: (1) Autocorrelation represents a moving average (MA) process. 
 (2) Partial Correlation represents an autoregressive component (AR) process. 
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Table 4.5  Correlogram of KLCI (Malaysia)  

 
Notes: (1) Autocorrelation represents a moving average (MA) process. 
 (2) Partial Correlation represents an autoregressive component (AR) process. 
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Table 4.6  Correlogram of SETI (Thailand)  

 
Notes: (1) Autocorrelation represents a moving average (MA) process. 
 (2) Partial Correlation represents an autoregressive component (AR) process. 
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Table 4.7  Correlogram of STI (Singapore)  

 
Notes: (1) Autocorrelation represents a moving average (MA) process. 
 (2) Partial Correlation represents an autoregressive component (AR) process. 
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Table 4.8  Estimation Results for JKSE (Indonesia) 

Var. JKSE Mean equation   Variance equation     LL 

Model μ d AR(1) MA(1)  ω d α β α+β  df AIC SIC 
GARCH (1, 1) 0.121     0.192  0.151 0.777 0.928  4.1234 -4256.78 
 5.456     2.144  3.318 10.36   11.15 3.384 3.380 
        φ β θ1 θ2    
FIGARCH (1,d,1) 0.123     0.382 0.322 -0.053 0.093   4.1096 -4252.27 
 5.602     3.382 4.338 -0.362 0.5358   10.82 3.381 3.377 
FIEGARCH (1,d,1) 0.108     6.754 0.036* -0.114 0.863 -0.147 0.2827 4.1888 -4240.28 
 5.021     4.534 1.782 -0.477 15.04 -4.229 5.230 10.81 3.373 3.367 
               
ARFIMA- 0.121 0.021 -0.235 0.307*  0.198  0.157 0.766    -4245.78 
GARCH (1,1) 4.503 0.9380 -1.228 1.702  2.119  3.378 9.700    3.377 3.372 
ARFIMA- 0.135 0.059    0.463 0.233     4.3969 -4248.68 
FIGARCH (0,d,0) 3.981 3.239    5.774 7.115     10.98 3.377 3.374 
ARFIMA- 0.126 0.022 -0.222 0.301*  0.455 0.235     4.4381 -4243.78 
FIGARCH (0,d,0) 4.607 0.9716 -1.245 1.799  5.801 7.163     10.86 3.375 3.370 
ARFIMA- 0.123 0.022 -0.223 0.297*  0.381 0.314 -0.082 0.052   4.2773 -4240.54 
FIGARCH (1,d,1) 4.532 1.004 -1.216 1.725  3.471 4.488 -0.563 0.2998   10.33 3.374 3.368 
ARFIMA- 0.089 0.067    7.382 0.033* -0.134 0.879 -0.158 0.2726 4.3601 -4230.773 
FIEGARCH (1,d,1) 2.390 3.926    4.485 1.813 -0.606 17.56 -4.570 5.367 10.30 3.366 3.360 
ARFIMA- 0.089* 0.034 -0.305 0.369*  7.169 0.033* -0.139 0.871 -0.162 0.2816 4.3807 -4227.07 
FIEGARCH (1,d,1) 1.861 1.602 -1.409 1.807*  4.543 1.792 -0.651 16.67 -4.704 5.434 10.14 3.365 3.357 
Notes:  (1) The two entries for each parameter are their respective estimate and t-ratios, and df indicates t-distribution parameter. 

  (2) Entries in bold, and bold * are significant at the 95% level, and the 90% level, respectively. 
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Table 4.9  Estimation Results for KLCI (Malaysia) 

Var. KLCI Mean equation   Variance equation     LL 

Model μ d AR(1) MA(1)  ω d α β α+β  df AIC SIC 
GARCH(1,1) 0.027     0.014  0.115 0.884 0.9991  4.144 -3057.02 
 2.153     2.068  4.188 31.97   11.74  2.431 2.428 
        φ β θ1 θ2    
FIGARCH(1,d,1) 0.028     0.074 0.312 -0.110 0.084   4.751 -3039.82 
 2.268     2.673 8.624 -0.670 0.468   12.57 2.418 2.414 
FIEGARCH(1,d,1) 0.024     14.933 0.033 -0.104 0.954 -0.0553 0.231 4.269 -3041.55 
 1.864     3.478 2.250 -0.438 45.05 -3.062 4.448 11.70 2.421 2.416 
               
ARFIMA- 0.026 0.037 -0.150 0.244  0.014  0.117 0.881    -3033.35 
GARCH(1,1) 1.438 0.890 -0.195 0.329  2.063  4.437 32.24    2.415 2.409 
ARFIMA- 0.023 0.091    0.114 0.228     4.910 -3034.82 
FIGARCH(0,d,0) 0.907 4.599    5.005 12.83     12.29 2.413 2.410 
ARFIMA- 0.027 0.033 -0.024 0.129  0.113 0.227     4.923 -3028.14 
FIGARCH(0,d,0) 1.525 0.816 -0.040 0.223  5.015 13.01     12.13 2.410 2.405 
ARFIMA- 0.028 0.032 0.001 0.097  0.069 0.316 -0.104 0.099   4.975 -3016.12 
FIGARCH(1,d,1) 1.580 0.849 0.002 0.155  2.560 8.313 -0.622 0.538   11.62 2.402 2.395 
ARFIMA- -0.006 0.203 0.786 -0.867  15.567 0.031 -0.093 0.953 -0.070 0.231 4.480 -3016.81 
FIEGARCH(1,d,1) -0.133 3.901 9.933 -16.99  3.533 2.226 -0.395 43.62 -3.459 4.959 11.02 2.404 2.396 
Notes:  (1) The two entries for each parameter are their respective estimate and t-ratios, and df indicates t-distribution parameter. 
            (2) Entries in bold, and bold * are significant at the 95% level, and the 90% level, respectively. 
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Table 4.10  Estimation Results for SETI (Thailand)  

Var. SETI Mean equation     Variance equation     LL 

Model μ d AR(1) AR(2) MA(1) MA(2)  ω d α β α+β  df AIC SIC 
GARCH(1,1) 0.051       0.066  0.112 0.863 0.975  5.156 -4231.43 
 2.308       3.158  6.741 42.48   7.601 3.363 3.360 
          φ β θ1 θ2    
FIGARCH(1,d,1) 0.050       0.114 0.522 0.117 0.542*   4.961 -4232.18 
 2.211       1.895 1.578 1.610 1.726   6.446 3.365 3.360 
FIEGARCH(1,d,1) 0.044       12.24 0.034 0.041 0.929 -0.058 0.182 5.306 -4221.89 
 1.987       4.798 2.999 0.183 48.05 -3.357 5.560 7.507 3.358 3.352 
                 
ARFIMA- 0.055 0.060 -0.313  0.280   0.068  0.114 0.860    -4226.92 
GARCH(1,1) 1.638 2.482 -1.393  1.346   3.176  6.818 41.69    3.362 3.356 
ARFIMA- 0.043 0.042      0.430 0.193     5.264 -4241.66 
FIGARCH(0,d,0) 1.375 2.461      5.861 9.969     7.978 3.372 3.368 
ARFIMA- 0.042 0.064 -0.308  0.267   0.432 0.193     5.250 -4240.449 
FIGARCH(0,d,0) 1.178 2.615 -1.592  1.481   5.846 9.939     7.985 3.372 3.367 
ARFIMA- 0.053 0.062 -0.317  0.282   0.117 0.515* 0.110 0.526*   5.013 -4227.52 
FIGARCH(1,d,1) 1.538 2.551 -1.496  1.433   1.950 1.686* 0.071 1.759   6.533 3.364 3.357 
ARFIMA- 0.033 0.078 -0.299  0.252   12.166 0.034 0.051 0.9275 -0.071 0.180 5.437 -4214.582 
FIEGARCH(1,d,1) 0.660 3.441 -1.427  1.267   4.963 3.088 0.2321 48.72 -3.748 5.784 7.111 3.355 3.347 
ARFIMA- 0.030 0.065 -1.033 -0.670 0.998 0.6873  12.06 0.035 0.0212 0.926 -0.072 0.187 5.4244 -4208.68 
FIEGARCH(1,d,1) 0.771 1.964 -2.253 -2.679 2.386 3.458  4.992 3.118 0.1022 47.62 -3.726 5.972 7.150 3.352 3.342 
Notes:  (1) The two entries for each parameter are their respective estimate and t-ratios, and df indicates t-distribution parameter. 
            (2) Entries in bold, and bold * are significant at the 95% level, and the 90% level, respectively. 
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Table 4.11  Estimation Results for STI (Singapore) 

Var. STI Mean equation   Variance equation     LL 

Model μ d AR(1) MA(1)  ω d α β α+β  df AIC SIC 
GARCH(1,1) 0.066     0.020  0.095 0.897 0.993  6.875 -3932.83 
 3.446     2.914  6.425 59.38   7.409 3.126 3.123 
        φ β θ1 θ2    
FIGARCH(1,d,1) 0.068     0.053 0.432 0.1164 0.498   7.225 -3925.273 
 3.524     2.321 5.826 1.597 4.216   7.367 3.121 3.117 
FIEGARCH(1,d,1) 0.180     1.003 0.650 0.5406  -0.142 0.009 3.816 -4032.90 
 7.891     3.749 7.954 1.102  -2.898 2.566 10.34 3.208 3.203 
               
ARFIMA- 0.072 0.053 0.233 -0.264  0.020  0.0958 0.897    -3930.29 
GARCH(1,1) 2.666 1.535 0.895 -0.993  2.902  6.351 58.20    3.127 3.121 
ARFIMA- 0.069 0.039    0.240 0.221     6.946 -3952.81 
FIGARCH(0,d,0) 2.720 2.268    5.969 14.60     8.229 3.142 3.139 
ARFIMA- 0.072 0.061 0.262 -0.296  0.241 0.220     6.869 -3952.469 
FIGARCH(0,d,0) 2.502 1.629 0.800 -0.883  5.971 14.47     8.201 3.144 3.139 
ARFIMA- 0.073 0.0502 0.215 -0.244  0.054 0.427 0.1171 0.492   7.307 -3922.823 
FIGARCH(1,d,1) 2.753 1.458 0.780 -0.864  2.296 5.788 1.558 4.055   7.097 3.122 3.115 
ARFIMA- 0.053 0.019    3.764 0.179 1.187  -0.118 0.240 3.274 -4036.400 
FIEGARCH(0,d,1) 2.853 1.243    12.70 6.681 2.918  -2.664 4.139 12.86 3.211 3.205 
ARFIMA- 0.0534 0.046*  -0.046  3.777 0.180 1.238  -0.111 0.237 3.246 -4035.41 
FIEGARCH(0,d,1) 1.895 1.833  -1.333  13.03 6.867 2.781  -2.538 3.975 12.90 3.211 3.205 
Notes:  (1) The two entries for each parameter are their respective estimate and t-ratios, and df indicates t-distribution parameter. 
            (2) Entries in bold, and bold * are significant at the 95% level, and the 90% level, respectively. 
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Table 4.12  Estimation Results of Conditional Mean (HAR(1)) and Conditional Variance Models 

Var. Model Mean equation  Variance equation      LL 

  φ1 φ2  ω α β γ θ1 θ2 df α+β AIC SIC 
JKSE GARCH(1,1) 0.106 0.091  0.197 0.156 0.767    4.303 0.923 -4245.397 
  4.722 4.422  3.274 4.845 15.74    10.53  3.377 3.373 
 GJR(1,1) 0.078 0.100  0.257 0.040* 0.727 0.242   4.550  -4222.768 
  3.416 4.901  4.882 1.987 17.46 4.913   10.11  3.360 3.355 
 EGARCH(1,1) 0.081 0.097  7.363 -0.139 0.897  -0.158 0.292 4.410  -4229.720 
  3.554 4.813  4.974 -0.855 34.53  -5.083 6.070 10.31  3.366 3.360 
KLCI GARCH(1,1) 0.023 0.129  0.014 0.118 0.880    4.391 0.998 -3033.174 
  1.802 6.459  2.779 5.851 46.15    10.87  2.414 2.410 
 GJR(1,1) 0.016 0.131  0.017 0.086 0.872 0.076   4.453  -3027.849 
  1.214 6.570  2.967 4.741 44.78 2.882   10.72  2.411 2.406 
 EGARCH(1,1) 0.014 0.133  22.21 -0.125 0.973  -0.061 0.245 4.493  -3021.008 
  1.367 6.227  3.754 -0.660 112.6  -3.243 5.224 10.82  2.406 2.400 
SETI GARCH(1,1) 0.049* 0.037  0.066 0.114 0.862    5.216 0.975 -4227.845 
  2.208 1.852  3.624 6.894 46.29    9.236  3.363 3.359 
 GJR(1,1) 0.035 0.038  0.090 0.074 0.842 0.094   5.321  -4220.631 
  1.558 1.915  3.884 4.510 39.76 3.296   9.078  3.358 3.353 
 EGARCH(1,1) 0.042 0.038  14.82 0.055 0.951  -0.055 0.196 5.284  -4225.030 
  1.849 1.923  4.846 0.273 80.95  -3.319 5.747 9.321  3.362 3.356 
STI GARCH(1,1) 0.064 0.025  0.020 0.096 0.896    7.036 0.993 -3930.922 
  3.334 1.242  3.086 7.022 64.92    7.376  3.127 3.123 
 GJR(1,1) 0.046* 0.029  0.025 0.043 0.901 0.083   7.377  -3920.259 
  2.316 1.408  3.621 3.234 63.81 4.378   7.105  3.119 3.114 
Notes:  (1) The two entries for each parameter are their respective estimate and t-ratios, and df indicates t-distribution parameter. 

  (2) Entries in bold, and bold * are significant at the 99% level, and the 95% level, respectively. 
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Table 4.13  Estimation Results of Conditional Mean (HAR(1,5)) and Conditional Variance Models 

Var. Model Mean equation  Variance equation      LL 

  φ1 φ2 φ3  ω α β γ θ1 θ2 df α+β AIC SIC 
JKSE GARCH(1,1) -0.017 -0.202 1.187  0.184 0.210 0.688    5.504 0.897 -3896.283 
  -0.859 -9.647 27.40  4.419 6.178 14.55    8.746  3.104 3.099 
 GJR(1,1) -0.038 -0.189 1.134  0.135 0.084 0.751 0.195   5.644  -3886.561 
  -1.871 -9.032 25.89  4.057 2.743 17.49 4.384   8.540  3.097 3.091 
 EGARCH(1,1) -0.041 -0.191 1.144  14.363 -0.026 0.919  -0.112 0.325 5.661  -3888.532 
  -2.054 -9.252 27.01  4.729 -0.144 35.73  -3.344 6.203 8.614  3.099 3.093 
KLCI GARCH(1,1) -0.004 -0.168 1.109  0.017 0.166 0.826    5.366 0.991 -2709.168 
  -0.401 -7.954 26.19  3.320 6.514 33.72    9.619  2.160 2.155 
 GJR(1,1) -0.010 -0.164 1.095  0.016 0.129 0.832 0.065   5.409  -2707.684 
  -0.897 -7.787 25.57  3.204 4.291 33.28 1.733   9.551  2.159 2.154 
SETI GARCH(1,1) -0.010 -0.255 1.238  0.076 0.164 0.795    7.319 0.959 -3853.321 
  -0.513 -12.49 28.94  3.958 7.140 28.94    7.836  3.070 3.065 
 GJR(1,1) -0.028 -0.251 1.211  0.070 0.099 0.808 0.117   7.461  -3848.247 
  -1.454 -12.34 28.54  4.049 4.037 31.95 3.186   7.700  3.067 3.061 
STI GARCH(1,1) -0.005 -0.262 1.281  0.016 0.115 0.878    9.081 0.993 -3521.148 
  -0.336 -13.29 30.87  3.101 7.191 54.61    5.799  2.806 2.801 
 GJR(1,1) -0.027 -0.258 1.246  0.014 0.048 0.890 0.120   9.497  -3512.966 
  -1.599 -13.17 30.34  3.062 2.656 59.70 4.113   5.653  2.799 2.794 
Notes:  (1) The two entries for each parameter are their respective estimate and t-ratios, and df indicates t-distribution parameter. 

  (2) Entries in bold, and bold * are significant at the 99% level, and the 95% level, respectively. 
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Table 4.14  Estimation Results of Conditional Mean (HAR(1,5,20)) and Conditional Variance Models 

Var. Model Mean equation    Variance equation      LL 

  φ1 φ2 φ3 φ4  ω α β γ θ1 θ2 df α+β AIC SIC 
JKSE GARCH(1,1) -0.018 -0.202 1.187 0.003  0.188 0.208 0.685    5.517 0.893 -3861.303 
  -0.833 -9.650 24.88 0.039  4.470 6.201 14.43    8.736  3.095 3.090 
 GJR(1,1) -0.037 -0.190 1.139 -0.007  0.140 0.086 0.745 0.192   5.660  -3851.823 
  -1.764 -9.043 23.76 -0.098  4.117 2.835 17.23 4.329   8.530  3.089 3.082 
 EGARCH(1,1) -0.041 -0.193 1.145 0.012  13.67 0.021 0.910  -0.107 0.325 5.707  -3853.827 
  -2.008 -9.302 24.46 0.162  4.880 0.113 34.07  -3.357 6.146 8.655  3.091 3.084 
KLCI GARCH(1,1) -0.003 -0.168 1.106 -0.003  0.017 0.164 0.827    5.380 0.991 -2682.259 
  -0.310 -7.969 23.67 -0.043  3.288 6.422 33.26    9.524  2.152 2.146 
 GJR(1,1) -0.009 -0.165 1.094 -0.004  0.016 0.129 0.832 0.061   5.421  -2680.921 
  -0.775 -7.811 23.16 -0.051  3.175 4.298 32.80 1.646   9.460  2.152 2.145 
SETI GARCH(1,1) -0.008 -0.254 1.242 -0.036  0.077 0.162 0.795    7.232 0.957 -3824.465 
  -0.409 -12.41 25.77 -0.450  3.952 7.096 28.76    7.848  3.066 3.060 
 GJR(1,1) -0.027 -0.250 1.212 -0.015  0.071 0.102 0.806 0.111   7.352  -3819.961 
  -1.332 -12.26 25.08 -0.188  4.036 4.156 31.30 2.999   7.739  3.063 3.057 
 EGARCH(1,1) -0.018 -0.246 1.215 -0.013  16.40 0.367 0.916  -0.040* 0.235 7.344  -3821.363 
  -0.888 -12.41 25.57 -0.178  5.564 1.390 40.79  -2.216 6.101 7.885  3.065 3.058 
STI GARCH(1,1) -0.003 -0.261 1.283 -0.019  0.016 0.116 0.877    9.130 0.992 -3498.647 
  -0.240 -13.21 27.47 -0.240  3.116 7.181 53.76    5.751  2.805 2.799 
 GJR(1,1) -0.025 -0.258 1.250 -0.022  0.014 0.049 0.889 0.119   9.535  -3490.650 
  -1.468 -13.09 27.04 -0.288  3.082 2.663 58.81 4.077   5.622  2.799 2.793 
Notes:  (1) The two entries for each parameter are their respective estimate and t-ratios, and df indicates t-distribution parameter. 

  (2) Entries in bold, and bold * are significant at the 99% level, and the 95% level, respectively. 
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Figure 4.1  Index values of Stock Markets in South-East Asia 
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      Source: Yahoo Finance (July 2009) 

 

Figure 4.2  The percent change in prices of Stock Markets in South-East Asia 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

105

-.2

-.1

.0

.1

.2

500 1000 1500 2000 2500

JKSE

-.12

-.08

-.04

.00

.04

.08

500 1000 1500 2000 2500

KLCI

-.20

-.15

-.10

-.05

.00

.05

.10

.15

500 1000 1500 2000 2500

SETI

-.10

-.05

.00

.05

.10

500 1000 1500 2000 2500

STI

Figure 4.3  Daily returns for all series 

 

  

 

 

 

 

 


