
 
 

Chapter 3 
 

Theory and Methodology 
 

 

3.1 Unit Root Test Model 

Consider a simple AR(1) process 

 

tttt yy εδχρ ++= −
1

1  (1)
 

 

where tχ are optional exogenous which may consist of constant, or a constant and 

trend ρ , δ and are parameters to be estimated, and the tε are assumed to be white 

noise. If 1≥ρ , y is a non-stationary series and the variance of increases with time 

and approaches infinity. If, 1<ρ , y is a trend-stationary series. Thus, the hypothesis 

of trend-stationary can be evaluated by testing whether the absolute value of ρ is 

strictly less than one. 

The null hypothesis 1:0 =ρH  against the one-sided alternative. In some 

cases, the null is tested against a point alternative 1:1 <ρH .In some cases, the null is 

tested against a point alternative. In contrast, the KPSS Lagrange Multiplier test 

evaluates the null of 1:0 <ρH  against the alternative 1:1 =ρH . 

 

3.1.1 The Augmented Dickey-Fuller (ADF) Test 

The standard DF test is carried out by estimating Equation (1) after 1−ty  

subtracting from both sides of the equation: 

 

tttt yy εδχα +′+=Δ −1  (2)
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where 1−= ρα . The null and alternative hypotheses can be written as, 

 

0:0 =αH  
 

 0:1 <αH  (3)
 

 

and evaluated using the conventional t -ratio for α : 

 

( )( )ααα ˆ/ˆ set =  (4)
 

 

where α̂  is the estimate of α, and ( )α̂se  is the coefficient standard error. Dickey and 

Fuller show that under the null hypothesis of a unit root, this statistic does not follow 

the conventional Student’s t-distribution, and they derive asymptotic results and 

simulate critical values for various test and sample sizes. 

The simple Dickey-Fuller unit root test described above is valid only if 

the series is an AR(1) process. If the series is correlated at higher order lags, the 

assumption of white noise disturbances is tε  violated. The Augmented Dickey-Fuller 

(ADF) test constructs a parametric correction for higher-order correlation by 

assuming that the y series follows an AR(ρ) process and adding ρ lagged difference 

terms of the dependent variable to the right hand side of the test regression: 

 

tptpttttt yyyyy νβββδχα +Δ++Δ+Δ+′+=Δ −−−− ...22111  (5)
 

 

This augmented specification is then used to test (3) using the t -ratio 

(10). An important result obtained by Fuller is that the asymptotic distribution of the t 

-ratio for α is independent of the number of lagged first differences included in the 

ADF regression. Moreover, the assumption demonstrate that the ADF test is 

asymptotically valid in the presence of a moving average (MA) component, provided 

that sufficient lagged difference terms are included in the test regression. 
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In practically, first, the data must be chosen whether to include 

exogenous variables in the test regression. There is a choice of including a constant, a 

constant and a linear time trend, or neither in the test regression. 

One approach would be to run the test with both a constant and a linear 

trend since the other two cases are just special cases of this more general 

specification. However, including irrelevant regressors in the regression will reduce 

the power of the test to reject the null of a unit root. The standard recommendation is 

to choose a specification that is a plausible description of the data under both the null 

and alternative hypotheses. 

Second, this paper has to specify the number of lagged difference terms 

to be added to the test regression (0 yields the standard DF test; integers greater than 0 

correspond to ADF tests). The usual (though not particularly useful) advice is to 

include a number of lags sufficient to remove serial correlation in the residuals. 

 

3.1.2 The Phillips-Perron (PP) Test 

The alternative (nonparametric) method of controlling for serial 

correlation when testing for a unit root. The PP method estimates the non-augmented- 

DF test equation (2), and modifies the t -ratio of the α coefficient so that serial 

correlation does not affect the asymptotic distribution of the test statistic. The PP test 

is based on the statistic: 

 

( ) ( )( )
sf

sefT
f

tt
2

1

0

00
2

1

0

0

2

ˆ~ αγγ
αα

−
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  (6)

 

 

where α̂  is the estimate, and αt  the t-ratio of α, ( )α̂se is coefficient standard error, 

and s is the standard error of the test regression. In addition 0γ , is a consistent 

estimate of the error variance in (2) (calculated as (T − k)s2 /T , where k is the number 

of regressors). The remaining term, 0 f is an estimator of the residual spectrum at 

frequency zero. 
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There are two choices you will have make when performing the PP test. 

First, you must choose whether to include a constant, a constant and a linear time 

trend, or neither, in the test regression. Second, you will have to choose a method for 

estimating f0. 

 

3.1.3 The Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) Test 

The testing differs from the other unit root tests described here in that the 

series yt is assumed to be trend stationary under the null. The KPSS statistic is based 

on the residuals from the OLS regression of yt on the exogenous variables χt : 

 

ttt uy +′= δχ  (7)
 

 

The LM statistic is be defined as: 

 

)/()( 0
22 fTtSLM

t
∑=  (8)

 

 

where  f0, is an estimator of the residual spectrum at frequency zero and where S(t) is 

a cumulative residual function: 

 

( ) ∑
=

=
t

tutS
1

ˆ
γ

 (9)

 

 

based on the residuals )0(ˆ δχ ttt yu ′−= . This paper points out that the estimator of δ 

used in this calculation differs from the estimator for δ used by GLS distending since 

it is based on a regression involving the original data and not on the quasi-differenced 

data. To specify the KPSS test, you must specify the set of exogenous regressors χt 

and a method for estimating f0. 
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3.2  ARCH - GARCH Model 

The autoregressive conditional heteroskedasticity (ARCH) model is the first 

model of conditional heteroskedasticity. The original idea was to find a model that 

could assess uncertainty changing over time. Let εt be a random variable that has a 

mean and a variance conditionally on the information set Ft −1 (the σ - field generated 

by , εt−n , n ≥ 1)  :The ARCH model of εt has the following properties. 

First, { }1| −tt FE ε and, second, the conditional variance { }1| −= ttt FEh ε  is a 

nontrivial positive-valued parametric function of Ft −1the sequence { }tε  may be 

observed directly, or it may be an error or innovation sequence of an econometric 

model. In the latter case, 

 

( )tttt yy με −=  (10)
 

 

where yt  is an observable random variable and ( ) { }1| −= ttyt FEy εμ  the conditional 

mean of yt  given Ft −1 the application was of this type. In what follows, the focus will 

be on parametric forms of ht, and ( )tt yμ will be ignored. Engle assumed that εt can be 

decomposed as follows: 

 

2
1

ttt hz=ε  (11)
 

 

where { }tz  is a sequence of independent, identically distributed (iid) random variables 

with zero mean and unit variance. This implies ( )ttt hDF ,0~| 1−ε where D stands for 

the distribution (typically assumed to be a normal or a leptokurtic one). The following 

conditional variance defines an ARCH model of order q: 

 

∑
=

−+=
q

n
ntnth

1

2
0 εαα  (12)
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Where 1,...,1,0,00 −=≥> qnnαα and 0>qα the parameter restrictions in (12) form 

a necessary and sufficient condition for positively of the conditional variance. 

Suppose the unconditional variance 22 αε =tE the definition of εt through the 

decomposition (11) involving zt then guarantees the white noise property of the 

sequence{ }tε , since { }tz  is a sequence of iid variables. Engle and others soon realized 

the potential of the ARCH model in financial applications that required forecasting 

volatility. The ARCH model and its generalizations are applied to modeling, among 

other things, exchange rates and export volumes. Forecasting volatility of these series 

is different from forecasting the conditional mean of a process because volatility, the 

object to be forecast, is not observed. The question then is how volatility should be 

measured. Using 2
tε  is an obvious but not necessarily. 

In applications, the ARCH model has been replaced by the so-called 

generalized ARCH (GARCH) model, the conditional variance is also a linear function 

of its own lags and has the form 

 

nt

p

n
nnt

q

n
nt hh −

=
−

=
∑∑ ++=

1

2

1
0 βεαα  (13)

 

 

The conditional variance defined by (13) has the property that the 

unconditional autocorrelation function of 2
tε  if it exists, can decay slowly, albeit still 

exponentially. For the ARCH family, the decay rate is too rapid compared to what is 

typically observed in financial time series, unless the maximum lag q in (12) is long. 

As (12) is a more parsimonious model of the conditional variance than a high-order 

ARCH model, most users prefer it to the simpler ARCH alternative. The 

overwhelmingly most popular GARCH model in applications has been the 

GARCH(1,1) model, that is, p = q = 1 in (13). A sufficient condition for the 

conditional variance to be positive with probability one is 

pnqnn ,...,1,0;,...,1,0,00 =≥=≥> βαα . The necessary and sufficient conditions for 

positivity of the conditional variance in higher-order GARCH models are more 

complicated than the sufficient conditions just mentioned and have been given in 
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Nelson and Cao (1992). Note that for the GARCH model to be identified if at least 

one 0>nβ  (the model is a genuine GARCH model) one has to require that also at 

least one 0>nα . If 0...1 === qαα  the conditional and unconditional variances of εt 

are equal and pββ ,...,1  are unidentified nuisance parameters. The GARCH(p,q) 

process is weakly stationary if and only if 1
11

<+ ∑∑ −−

p

n n
q

n n βα  

The stationary GARCH model has been slightly simplified by variance 

targeting. This implies replacing the intercept α0 in (13) by ( ) 2
1 1

1 σβα∑ ∑− −
−−

q

n

p

n nn  

where 22
tEεσ = .The estimate ∑ −

−=
T

t tT
1

212ˆ εσ  is substituted for σ2 before 

estimating the other parameters. As a result, the conditional variance converges 

towards the long-run unconditional variance, and the model contains one parameter 

less than the standard GARCH(p,q) model. It may be pointed out that the GARCH 

model is a special case of an infinite-order (ARCH(∞)) model (11) with 

 

∑
∞

=
−+=

1

2
0

n
ntnth εαα  (14)

 

 

The ARCH(∞) representation is useful in considering properties of ARCH and 

GARCH models such as the existence of moments and long memory. 

 

3.3  Definition and properties of the FIGARCH process 

Following Engle (1982), consider the discrete time real-valued stochastic 

ARCH process,{ }tε , 

 

ttt z σε ≡ (15)
 

 

where ( ) 01 =− tt zE  and ( ) 11 =− tt zVAR , and tσ  is a positive time-varying and 

measurable function with respect to the information set available at time 1−t . 

Throughout, ( )⋅−1tE  and ( )⋅−1tVAR  refer to the conditional expectation and variance 
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with respect to this same information set. Thus, by definition, the { }tε  process is 

serially uncorrelated with mean zero, but the conditional variance of the process, 2
tσ , 

is changing over time. 

In the classic ARCH(q) model of Engle (1982), the conditional variance 2
tσ  is 

postulated to be a linear function of the lagged squared innovations implying 

Markovian dependence dating back only q periods; i.e., 2
tε  for qi ,...,2,1= . The 

GARCH(p,q) specification of Bollerslev (1986) provides a more flexible lag structure. 

Formally, this model is defined by 

 
222 )()( ttt LL σβεαωσ ++=  (16)

 

 

where L  denotes the lag or backshift operator, and q
q LLLL αααα +++≡ ...)( 2

21  

and p
p LLLL ββββ +++≡ ...)( 2

21  . For stability and covariance stationarity of the 

{ }tε  process, all the roots of [ ])()(1 LL βα −−  and [ ])(1 Lβ−  are constrained to lie 

outside the unit circle. The GARCH(p, q) process may be rewritten as the infinite-

order ARCH process, 

 

[ ] [ ] 2112 )(1)()1(1 tt LL εβαβωσ −− −+−=  
 
                                    [ ] 21 )()1(1 tL ελβω +−≡ −  (17)
 

 

The before mentioned stationarity condition implies that the effect of the past squared 

innovations on the current conditional variance decays exponentially with the lag 

length. Alternatively, the GARCH(p, q) process in Eq. (16) may also be expressed as 

an ARMA(m, p) process in 2
tε , 

[ ] [ ] tt LLL νβωεβα )(1)()(1 2 −+=−−  (18)
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where m≡max{p, q}, and 22
ttt σεν −≡  is mean zero serially uncorrelated. Thus, the 

{ }tν  process is readily interpreted as the ‘innovations’ for the conditional variance. 

When the autoregressive lag polynomial, [ ])()(1 LL βα −− , contains a unit root, the 

GARCH(p, q) process is defined by Engle and Boilerslev (1986) to be integrated in 

variance. The corresponding Integrated GARCH(p, q), or IGARCH(p, q), class of 

models is given succinctly by 

 

[ ] tt LLL νβωεφ )(1)1)(( 2 −+=−  (19)
 

 

where [ ]( ) 11)()(1)( −−−−≡ LLLL βαφ  is of order 1−m . The Fractionally Integrated 

GARCH, or FIGARCH, class of models is simply obtained by replacing the first 

difference operator in Eq. (19) with the fractional differencing operator. 

In order to motivate this development, it is worth briefly considering the 

fractionally integrated process for the mean. The concept of long-memory and 

fractional Brownian motion was originally developed by Hurst (1951) and 

Mandelbrot and Van Ness (1968). However, the ideas were essentially 

operationalized for applications with discrete time representations by Granger (1980, 

1981), Granger and Joyeux (1980), and Hosking (1981). In particular, the ARFIMA(k, 

d, I) class of models for the discrete time real-valued process }{y t  is defined by 

 

( ) tt
d LbyLLa ε)(1)( =−  (20)

 

 

where )(La  and )(Lb  are polynomials in the lag operator of orders k and l 

respectively, and { }tε  is a mean-zero, serially uncorrelated process. The fractional 

differencing operator, (1 - L) d, has a binomial expansion which is most conveniently 

expressed in terms of the hypergeometric function, 
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( ) ( )LdFL d ;1,1,1 −=−  
 

                                  ∑
∞=

−− −Γ+Γ−Γ=
,0

11 )()1()(
k

kLdkdk  

 

           ∑
∞=

=
,0k

k
k Lπ  (21)

 

 

where ( )⋅Γ  denotes the Gamma function. Provided that ( ) ∞<tεvar  and 

5.05.0 <<− d , the { }ty  process in Eq. (20) is weakly stationary and invertible, and 

will possess unique infinite moving average and autoregressive representations. 

However, for d > 0 the process is long memory in the sense that ∑ −=∞→ kkj jk ,
lim ρ , 

where jρ  denotes the autocorrelation of the process at lag j, does not converge to a 

finite limit. As argued forcefully by Sowell (1992b), the ARFIMA model essentially 

disentangles the short-run and the long-run dynamics, by modelling the short-run 

behavior through the conventional ARMA lag polynomials, a(L) and b(L), while the 

long-run characteristic is captured by the fractional differencing parameter, d. 

Analogously to the ARFIMA(k, d, l) process for the mean, the FIGARCH(p, 

d, q) process for { }tε  is naturally defined by 

 

( ) [ ] tt
d LLL νβωεφ )(11)( 2 −+=−  (22)

 

 

where 10 << d , and all the roots of )(Lφ  and [ ])(1 Lβ−  lie outside the unit circle. 

Rearranging the terms in Eq. (22), an alternative representation for the FIGARCH(p, 

d, q) model is 

 

[ ] [ ] 22 )1)(()(1)(1 t
d

t LLLL εφβωσβ −−−+=−  (23)
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Thus, the conditional variance of e, is simply given by 

 

[ ] [ ]{ } 2112 )1)(()(11)1(1 t
d

t LLL εφββωσ −−−+−= −−  
 

[ ] 21 )()1(1 tL ελβω +−≡ −  (24)
 

 

where ...)( 2
21 ++= LLL λλλ  . Of course, for the FIGARCH(p, d, q) process in Eq. 

(22) to be well-defined and the conditional variance to be positive almost surely for 

all t, all the coefficients in the infinite ARCH representation in Eq. (24) must be 

nonnegative; i.e., 0≥kλ  for k = 1, 2 . . . . . As for the GARCH(p, q) class of models 

analyzed by Nelson and Cao (1992), general conditions to ensure nonnegativity of all 

the lag coefficients in )(Lλ  have proven elusive. Fortunately, as illustrated below, 

sufficient conditions are fairly easy to establish on a caseby- case basis. 

For 10 ≤< d  the hypergeometric function evaluated at L = l equals zero, F(-d, 

1, 1;1) =0, so that 1)1( =λ . The 0>ω  term therefore has the same interpretation as in 

the IGARCH model. Consequently, the second moment of the unconditional 

distribution of tε  is infinite, and the FIGARCH process is clearly not weakly 

stationary; a feature it shares with the IGARCH class of processes.  However, as 

shown by Nelson (1990a) for the IGARCH(1, 1) model and extended to the general 

IGARCH(p, q) model by Bougerol and Picard (1992), IGARCH models are strictly 

stationary and ergodic. Since the high-order lag coefficients in the infinite ARCH 

representation of any FIGARCH model may be dominated in an absolute value sense 

by the corresponding IGARCH coefficients from Eq. (19), it follows by a direct 

extension of the proofs for the IGARCH case that the FIGARCH(p, d, q) class of 

processes is strictly stationary and ergodic for 10 ≤≤ d . 

As highlighted by this discussion, considerable care should be exercised in 

interpreting persistence in nonlinear models. Formally, Bollerslev and Engle (1993) 

define a process to be persistent in variance if lim ( ) ( ) 0||sup 22 >Ε−Ε +++∞→ kttktstk εε  

for some s > 0. This same notion of infinite dependence on the initial conditions for 

the optimal forecasts of the future conditional variances also underlies the conditional 
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moment profiles analyzed by Gallant, Rossi, and Tauchen (1993). However, in the 

present context in which the conditional variance is parameterized as a linear function 

of the past squared innovations, the persistence of the conditional variance is most 

simply characterized in terms of the impulse response coefficients for the optimal 

forecast of the future conditional variance as a function of the time t innovation, tν , 

 

( ) ( ) tktttkttk νενεγ ∂Ε∂−∂Ε∂≡ −++
2

1
2  (25)

 

 

Of course, in more general conditional variance models the iγ 's will depend on the 

time t information set. However, for the FIGARCH class of models analyzed here, the 

impulse response coefficients are independent of t, and the persistence as measured by 

the iγ  coefficients corresponds directly to the generalization of the linear impulse 

response analysis to nonlinear models developed by Gallant, Rossi, and Tauchen 

(1993). Specifically, the impulse response coefficients may be found from the 

coefficients in the )(Lγ  lag polynomial, 

 

[ ] t
dd

t LLLLLL νβφωφε )(1)()1()()1()1( 11112 −−+−=− −−−−  
 

tL νγζ )(+≡  (26)
 

 

where the first equality follows directly from the definition of the FIGARCH(p, d, q) 

process in Eq. (22). Analogously to conventional impulse response analysis for the 

mean, the long-run impact of past shocks for the volatility process may now be 

assessed in terms of the limit of the cumulative impulse response weights, i.e., 

 

kkki
ik

λγγ
∞→

=
∞→

== ∑ limlim)1(
,0

 

 

               ( ) [ ])1(1)1(1;1,1,1 1 βφ −−= −dF  (27)
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As noted above, for ( ) 01;1,1,1,10 =−<≤ dFd , so that for the covariance stationary 

GARCH(p, q) model and the FIGARCH(p, d, q) model with 10 << d , shocks to the 

conditional variance will ultimately die out in a forecasting sense. There are important 

differences in the shock dissipation for d = 0 and 0 < d < 1, however. Whereas shocks 

to the GARCH process die out at a fast exponential rate, for the FIGARCH model kλ  

will eventually be dominated by a hyperbolic rate of decay; see, e.g., Diebold, Husted, 

and Rush (1991). Thus, even though the cumulative impulse response function 

converges to zero for 10 <≤ d , the fractional differencing parameter provides 

important information regarding the pattern and speed with which shocks to the 

volatility process are propagated. In contrast, for d = 1, F(d- 1, 1, 1; 1) = 1, and the 

cumulative impulse response weights will converge to the nonzero constant 

[ ])1(1)1()1( 1 βφγ −×= − . Thus, from a forecasting perspective shocks to the 

conditional variance of the IGARCH model persist indefinitely. For values of d > 1, 

F(d - 1, 1, 1; 1) = ∞ , resulting in an unrealistic explosive conditional variance process 

and )1(γ  being undefined. 

In most practical applications relatively simple first-order models have been 

found to provide good representations of the conditional variance processes. To 

illustrate the ideas developed above consider therefore the simple GARCH(1,1) 

model, 

 
2

11
2

11
2

−− ++= ttt σβεαωσ  
 

 

rewritten in ARMA(1,1) form as 

 

( ) ( ) tt LL νβωεφ 1
2

1 11 −+=−  
 

 

where 111 βαφ +≡ . The impulse response weights for this model are given by the 

coefficients in the polynomial, ( )LLLL 1
1

1 1)1)!1()( βφγ −−−= − , so that 

1,1 1110 −−== βφγγ , and ( )( ) 2
111 1 −−−= k

k φφβφγ  for 2>k ; see also Engle and 
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Bollerslev (1986). The cumulative impulse response weights for the process equals 

( ) 1
111
−−= k

k φβφλ  for k > 1, and in the limit 0)1( =γ  provided that 10 1 <<φ . Hence, 

the effect of a shock for the forecast of the future conditional variance tend to zero at 

a fast exponential rate. The IGARCH(1,1) model occurs when 1=tφ , 

 

( ) ( ) tt LL νβωε 1
2 11 −+=−  

 

 

In this situation, ( )11 βλ −=k  for all lags k > 1, and all the cumulative impulse 

response weights are equal to the nonzero constant 11)1( βγ −= . The corresponding 

FIGARCH(1, d, 0) model is 

 

( ) ( ) tt
d LL νβωε 1

2 11 −+=−  
 

 

By analogy to the properties for the ARFIMA(0,d, 1) model developed in Hosking 

(1981), it is possible to show that the cumulative impulse response coefficients in the 

infinite ARCH representation for the FIGARCH(1,d, 0) model, 

( ) ( )dLLL −−−≡ − 111)( 1
1βλ , equal 

 

[ ] ( ) 111
1 )()(1)1(1 −−− ΓΓ−+Γ⋅−−−= dkdkkdk βλ  

 

 

for k > 1, and 10 =λ . Thus, provided that to 0>ω , the condition 10 1 ≤<≤ dβ  is 

both necessary and sufficient to ensure that the conditional variance in the 

FIGARCH(1,d, 0) model is positive almost surely for all t. Furthermore, it follows by 

a straightforward application of Sterling's formula, that for high lags, k, 

 

( )[ ] 11
1 )(1 −−Γ−≈ d

k kdβλ  
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In contrast to the covariance stationary GARCH(1,1) model or the IGARCH (l,1) 

model, where shocks to the conditional variance either dissipates exponentially or 

persist indefinitely; for the FIGARCH(I, d, 0) model the response of the conditional 

variance to past shocks decays at a slow hyperbolic rate. 

 

3.4  The Normal Inverse Gaussian distribution 

The normal inverse Gaussian distribution is a variance-mean mixture of a 

Gaussian distribution with an inverse Gaussian. A stochastic variable X is said to be 

normal inverse Gaussian if it has a probability density function of the form [l, 2, 5] 

 

( )[ ]
( ) ( )[ ]xqK
xq

xpxf X α
π
αδ

1
exp)( =  (28)

 

 
Figure 3.1 NIG-density (logarithmic scale) for different values ofα . Here, 

0== μβ , and 1=δ . 
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where K1 (x) is the modified Bessel function of the second kind with index 1, 

( ) 2
12222 )()(),()( δμμββαδ +−=−+−= xxqxxp .Furthermore,

0,0 ><≤ δαβ , and ∞<<∞− μ . 

As seen from the definition in Eq. (28), the shape of the NIG-density is 

specified by a four dimensional parameter vector ( δμβα ,,, ). This parameterization 

is very flexible indeed, making it possible to model a large variety of shapes and with 

various decay rates of the tail. 

The four parameters of the NIG-distribution have natural interpretations 

relating to the overall shape of the density as follows. The a-parameter controls the 

steepness of the density, in the sense that the steepness or pointiness of the density 

increases monotonically with increasing α . This has implications also for the tail 

behavior, by the fact that large values of α  implies light tails, while smaller values of 

α  implies heavier tails. Note the similarity between this parameter and the α -

parameter in the α -stable distribution. Figure 3.1 shows the dependency on α  for 

0== μβ and 1=δ . Note that the tails become heavier as the value of α  decreases. 

 
Figure 3.2 NIG-density (logarithmic scale) for different values of β . Here, 

0,5 == μα , and 1=δ . 
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The −β parameter is a skewness parameter, in the sense that 0<β  implies a 

density skew to the left, 0>β  implies a density skew to the right, and ,Ll = 0 implies 

a density that is symmetric around μ , which is obviously a centrality or translation 

parameter. Figure 3.2 shows the dependency on β . Note that the skewness increases 

as β  increases. 

Last, the −δ parameter is a scale parameter in the sense that the rescaled 

parameters αδα →  and βδβ →  are invariant under location-scale changes of x. 

 

3.5  Properties of NIG Variables 

NIG-variables obey several desirable properties that make them suitable for 

practical noise modeling. We will now demonstrate the attractiveness of the NIG-

distribution in terms of some of its properties. 

 

3.5.1 Cumulants 

Bamdorff-Nielsen(1997) derived the moment generating function of the 

NIG-distribution. By generalizing his result, we readily derive the characteristic 

function of the NIG as 

 

μωωβαδβαδω jj
X eee

2222 )()( +−−−=Φ  (29)
 

 

where 1−=j  is the imaginary unit, and ∞<<∞− ω . 

 

The cumulant generating function )(ln)( ωω XX Φ=Ψ  therefore has the 

following simple form 

 

( ) μωωβαβαδω jjX +⎥⎦
⎤

⎢⎣
⎡ +−−−=Ψ 2222)(  (30)
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With the cumulant generating function at hand, it is now straightforward 

to calculate the cumulant of order n by means of 

 

n
X

n
nn

X d
d

j
ω
ω

κ
)0(

)()( =Ψ
−=  (31)

 

 

The first four cumulants are readily found to be 
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We thus see that all cumulants exist and that they are expressible as simple algebraic 

functions of the parameters. 

 

It is particularly interesting to notice that the skewness and kurtosis has 

the following elegant closed form expressions 
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where αβρ /=  and 22 βαδξ −= . 



 

32

Since -1 < ρ  < 1 and ∞<< ξ0 , the expressions for skewness and 

kurtosis, Eqs. (34) and (35) show that we can model data that covers a very large 

range of non-Gaussian shapes. By combining Eqs. (34) and (35) it is easy to show that 

we may model variables with any simultaneous skewness and kurtosis in the region 

3/4 2
34 γγ ≥ . 

 

3.5.2 Exact limits 

If we assume β  = 0 and μ  arbitrary, one can readily show that the 

Gaussian~ X  density is a limit when either ∞→α  or ∞→δ , with the identification 

that αδσ /2 = . 

Another important special case of the NIG is the Cauchy distribution 

which results when 0== βα , and β  and δ  arbitrary. 

 

3.5.3 Tail behavior 

Asymptotically, the Bessel function behaves as 

 

)(1 xK ~ ∞→− xx
x

);exp(
2
π  (36)

 

 

Hence, the tail of the NIG decays as 

 

)(xf x ~ )exp(23 xxx αβ −−  (37)

 

 

Note that Eq. (37) is invalid when a - << 1. In that special case, the tail of the NIG 

decays as 

 

)(xfx ~ 2−x  (38)
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which is of course the tail behavior of the Cauchy. 

 

3.5.4 Convolution property 

A very attractive and useful property of the NIG that cannot be 

overrated, is that it is closed under convolution [ 1, 2]. This has far reaching 

consequences when considering sums of NIG variables. 

Let MXX ,...,1  be M independent NIG-variables with common 

parameters α  and β , but having individual location parameters Mμμ ,...,1  and 

individual scale parameters Mαα ,...,1 . Then the sum variable MXXY ++= ...1  is 

also NIG distributed, with parameters ( )
tottot δμβα ,,, , where ∑= M

m Mtot μμ  and 

∑ =
=

M

m mtot 1
αα  . 

 

3.6  FIGARCH – NIG Model 

In FIGARCH-NIG model, the time series return data from the exchange rate 

can be written as 
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which zt is zero-mean and unit variance process. From the study of Anderson 

and Jenson and Lunde defined the zt to be NIG distributed as 
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where 22 ba −=γ  in NIG distributed defined that the conditional 

distribution of returns will be NIG as well 
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where Ωt-1 is the information set from the previous day return and 

,...),,( 2111 −−−− =Ω tttt rrrσ  and conditional mean and conditional variance can be 

defined as 
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It is given that μσ −
−

−=Ω−= − a
babrrEru tttttt
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1)|(  which is the innovation of 

return process.  

 


