TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (THAI)	v
ABSTRACT (ENGLISH)	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
CHAPTER I INTRODUCTION	1
1.1 Rationale	1
1.2 Objectives	2
1.3 Hypothesis	2
CHAPTER II REVIEW OF THE LITERATURE	3
2.1 EDA gene	5
2.1.1 <i>EDA</i> structure and EDA protein	ers 5
2.1.2 EDA receptors and adaptor (1) EDAR	e ⁸ 8
(2) XEDAR	10
(3) EDARADD	11

2.1.3 EDA-EDAR-NF-κB signal transduction pathway	12
2.1.4 Regulation of the expression and associations with other	
signaling pathways	16
2.1.5 Molecular targets of EDA	19
2.2 Ectodermal organogenesis	22
2.2.1 Expression pattern	22
2.2.2 Stages of ectodermal organ development	24
2.2.3 Role of EDA in ectodermal organogenesis	28
(1) Consequences of the loss of Eda signaling in mice	29
(2) Stimulation of ectodermal organ development by Eda	30
2.3 <i>EDA</i> -associated human disorder	31
2.3.1 X-linked hypohidrotic ectodermal dysplasia	31
2.3.2 Non-syndromic hypodontia	38
2.4 Previously reported <i>EDA</i> mutations	39
2.5 Genotype-Phenotype correlation	42
CHAPTER III MATERIALS AND METHODS	44
CHAPTER IV RESULTS Chiang Mai Univer	51
CHAPTER V DISCUSSION	⁷⁰
CHAPTER VI CONCLUSIONS	86
BIBLIOGRAPHY	87

APPENDICES	100
Appendix A List of patients and their phenotypes	101
Appendix B Sequence of each exon of EDA	102
Appendix C Amino acid sequences of EDA	104
Appendix D Coding sequences and their corresponding	105
amino acid sequences of EDA	
CURRICULUM VITAE	107

ลิบสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Ta	able	Page
	2.1 Exons of human <i>EDA-A1</i> gene and their exon size	6
	3.1 Primer pairs used for mutation detection in <i>EDA</i>	47
	3.2 Reagents and concentrations used for polymerase chain reaction of <i>EDA</i>	48
	4.1 <i>EDA</i> mutations identified from the Thai individuals in this study	52

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure Malla	Page
2.1 Schematic representation of ectodysplasin	8
2.2 EDA-EDAR-NF- κB pathway	14
2.3 Schematic presentation of the regulation of expression of	of
ectodysplasin and of Edar	17
2.4 Non-overlapping expression pattern of Eda and Edar du	ring
ectodermal organogenesis	23
2.5 Schematic presentation of the development of hair and t	ooth 27
2.6 Comparison of primary hair follicle and molars in the lo	ower jaw
of wild type, <i>Tabby</i> , and K14- <i>Eda-A1</i> mice	32
2.7 Phenotypic comparison of wild type, and K14-Eda-A1 r	mice 33
2.8 Phenotypic features of hypohidrotic ectodermal dysplasi	ia 35
2.9 A photo of Sungthong, a Thai actor and singer	University
2.10 Pathologic variants of <i>EDA</i> from previous reports.	erv ₄₀
3.1 Amplification conditions for polymerase chain reaction	of <i>EDA</i> 48
3.2 Gel electrophoresis	49

4.1 Facial and oral appearance of patient CGL DNA No.738	53
4.2 Mother of patient CGL DNA No.738	53
4.3 Pedigree of family I	54
4.4 Identification of <i>EDA</i> mutations in the proband affected with	
HED (CGL DNA No.738)	55
4.5 Multiple sequence alignments of the amino acid position 156 of EDA	55
4.6 Pedigree of Family II, affected with XLHED	56
4.7 Phenotypes of members in Family II, affected with XLHED	57
4.8 Mutation analysis (c.646-663Del18) of Family II, affected with XLHED	59
4.9 Multiple sequence alignments of the amino acid position 215	
to position 220	60
4.10 Mutation analysis (p.Arg334His) of participating members in Family II,	
affected with XLHED	60
4.11 Detection of p.Arg334His variant in contrils	61
4.12 Phenotypes of members in the Family III	62
4.13 Mutation analysis of Family III, affected with p.Arg349Thr	63
4.14 Alignment of the human amino acid position 349 with corresponding	
sequences from other species	63

4.15 Clinical and radiographic examination of proband (CGL DNA No.431)	64
4.16 Pedigree shows the mutation was transmitted from her father who was	
hypodontia of teeth 18 and 28	65
4.17 Mutation analysis of the <i>EDA</i> gene of Family IV, with p.Glu164Ala	66
4.18 Alignment of the human amino acid position 164	66
4.19 Pedigree of the family harboring p.Arg334His	67
4.20 Phenotype of members in the Arg334His-affected family	68
4.21 Analysis of the p.Arg334His polymorphism in exon 9 of Family V	69
5.1 Phenotype of a Chinese man affected with p.Ar334His	80
5.2 Structural analysis of the Arg334	81
5.2 Proband CGL DNA NO.787	85

ลิบสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved