CHAPTER 3

RESULT

915

3.1 Results of part 1

3.1.1 Tensile-shear bond strength

The tensile-shear bond strength values (in MPa), obtained in part 1, are displayed in table 2 and fig. 13. Two-way ANOVA revealed that the tensile-shear bond strength between the post and composite core-build up material was significantly influenced by the type of post, type of plasma treatment, and their interaction (p<0.01) (table 3). Tukey's test revealed significant differences between the control group and the other plasma treatment groups. Besides, a significant difference in the tensile-shear bond strength was detected between the O₂ and the other plasma treatment groups. For the FRC posts, 1-way ANOVA revealed that all of the plasma treatments significantly influenced the tensile-shear bond strength when compared with the control group (p<0.05). For the DT posts, only the Ar, N₂ and He+N₂ plasma treatments significantly influenced the tensile-shear bond strength when compared with the control group (p<0.05).

		2		Treatment		
	Type of post		•	V		
2	ans	Control	O ₂	Ar	N ₂	He+N ₂
U	FRC	13.85±0.6 ^a	19.33±2.9 ^b	20.32±2.6 ^b	21.73±3.2 ^b	22.80±2.6 ^b
	DT	13.90±1.3°	13.67±1.8°	19.75 ± 2.0^{d}	17.60 ± 2.4^{d}	21.08 ± 1.2^{d}

Table 2 Means (MPa) \pm s.d. of tensile-shear bond strength for all groups.

Different in alphabet denotes significant differences at p<0.05

Amongst all the plasma treatment groups, the $He + N_2$ plasma treatment yield the highest tensile-shear bond strength for both types of posts. Consequently, this plasma was used in part 2.

Table 3 Two-way ANOVA revealed p-value<0.01 for the type of the post (type), the type of plasma treatment (treatment), and their interactions (type*treatment)

Tests of Between-Subjects Effects

3.1.2 Surface roughness

Table 4 shows the surface roughness results of the FRC and DT posts in all treatment groups. Two-way ANOVA revealed that the average surface roughness on the surface of the post was significantly influenced by the type of post and type of plasma treatment, but not by their interaction. Among all the treatment groups, Tukey's test revealed significant differences in surface roughness between the control and the Ar treatment groups and between the O_2 and Ar treatment groups. For the FRC posts, 1-way ANOVA revealed no significant differences in surface roughness between any of the groups. However, for the DT posts, there was a significant difference between the O_2 and the Ar treatment groups.

Table 4 Means $(\mu m) \pm s.d.$ of surface roughness calculated for all the treatment groups.

Type of post					
	Control	O_2	Ar	N_2	He+N ₂
FRC	0.83 ± 0.06^{a}	$1.04{\pm}0.10^{a}$	1.23±0.16 ^a	1.17 ± 0.12^{a}	0.96 ± 0.06^{a}
DT	0.73 ± 0.30^{b}	0.70 ± 0.26^{b}	1.14±0.15 ^c	0.93±0.15 ^{b,c}	$0.85 \pm 0.32^{b,c}$

Different alphabet denotes significant differences at p<0.05

GMAI

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University AII rights reserved

3.1.3 Light microscopic analysis

Light microscopic images of the debonded specimens after the pull-out test demonstrated that mixed adhesive/cohesive failure at the composite core build-up material/post occurred in both types of posts (fig. 14).

Figure 14 Light microscopic image of the debonded surfaces of FRC and DT posts: (a, b) debonded surfaces of FRC Postec: (c, d) debonded surface of DT Light-Post.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

3.2 Results of part 2

3.2.1 Step 1 Gas pressure

The tensile-shear bond strength values (MPa), obtained in this step, were displayed in table 5 and fig. 15a, b. For both FRC and DT post, 1-way ANOVA revealed that the tensile-shear bond strength between the post and composite core build-up material was not significantly influenced by the gas pressure (p<0.05).

Table 5 Means (MPa) \pm s.d. of tensile-shear bond strength calculated for all gas pressure groups for FRC and DT post.

Ga	Type of post as pressure (Pa)	FRC	DT
S	2.7	21.55±3.41	20.97±2.70
Sir	6.7	19.97±2.86	19.60±3.60
	13.3	21.00±3.23	20.73±4.64
	26.7	22.80±2.25	20.95±1.36
	40.0	21.47±3.19	20.27±1.79

Figure 15a Tensile-shear bond strengths (MPa) for all gas pressure groups for FRC post.

Figure 15b Tensile-shear bond strengths (MPa) for all gas pressure groups for DT post.

Although there was no significant difference in tensile-shear bond strength between each gas pressure group, the gas pressure of 26.7 Pa was selected because of their highest tensile-shear bond strength between the FRCPs and the composite core build-up material and more reliable results when compared with the other groups.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

The MAI

3.2.2 Step 2 Discharge power

The tensile-shear bond strength values (MPa), obtained in this step, were displayed in table 6 and fig. 16a, b. For both types of posts, 1-way ANOVA revealed that the tensile-shear bond strength between the post and composite core build-up material was not significantly influenced by discharge power (p<0.05).

Table 6 Means (MPa) \pm s.d. of tensile-shear bond strength calculated for all discharge power groups.

Figure 16b Tensile-shear bond strengths (MPa) for all discharge power groups for DT post.

The discharge power at 75 W and 50 W were selected for the FRC posts and the DT posts respectively because of their highest tensile-shear bond strength and the level of ion energy was suitable for the chemical structure of each type of post that will be discussed later.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

MAI

3.2.3 Step 3 Plasma treatment time

Table 7 and fig. 17a, b showed the tensile-shear bond strength of the FRC and DT posts in different plasma treatment time. For both types of posts, 1-way ANOVA revealed that the tensile-shear bond strength was significantly influenced by plasma treatment time (p<0.05) (table 8 for FRC post, table 9 for DT post). For the FRC posts, Tukey's test revealed significant differences between the treatment time of 10 minutes and the other groups except for the treatment time of 15 minutes. For the DT posts, Tukey's test revealed significant differences between the treatment time of 15 minutes.

Table 7 Means (MPa) \pm s.d. of tensile-shear bond strength calculated for all the treatment time groups.

~			
	Type of post		575
	Treatment	FRC	DT
	time (minute)		$ \prec $
	3	23.48±3.08 ^a	21.42±3.51 ¹
	5	23.10±3.45 ^a	26.60 ± 2.09^2
	10	29.37±3.36 ^b	28.35 ± 2.60^2
	15	25.53±1.40 ^{a,b}	32.68 ± 1.37^3
	30	24.02±2.88 ^a	31.80±2.47 ^{2,3}

Different in alphabet and number denote significant differences at p<0.05

 Table 8 One-way ANOVA revealed p-value<0.01 for FRC post in plasma treatment</th>

t	ime groups.	n i										
ลข	ana	SIJK	173		ANOVA		a 8	J	ð	IJ	U	IKI
	MPa											
Co	ovrig	nt [©]	by (C	Sum of Squares	Q	df	Mean	Square	ni	¥/e	Sig.
	Bétween 🔍	(Combined)	/		157.077	0	4		39.269		4.644	.006
Δ	Groups	Linear Term	Contrast	ŀ.	7.350	P	1	C	7.350		.869	.360
		5	Deviation		149.727		3	3	49.909	1	5.903	.003
	Within Groups				211.383		25		8.455			
	Total				368.460		29					

Table 9 One-way ANOVA revealed p-value<0.001 for DT post in plasma treatment time groups.

Figure 17a Tensile shear bond strength (MPa) for all the treatment time groups for the FRC posts. Copyright[©] by Chiang Mai University A I rights reserved

Figure 17b Tensile shear bond strengths (MPa) for all the treatment time groups for the DT posts.

Based on the results obtained in this study, it could be concluded that the most suitable parameters for $He+N_2$ plasma treatment, including the gas pressure, the discharge power, and the treatment time were 26.7 Pa, 75 W, 10 minutes and 26.7 Pa, 50 W, 15 minutes for the FRC posts and the DT posts respectively.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

MAIL

3.3 Results of Fourier transform infrared spectroscopy (FTIR) for chemical analysis

Fig. 18a, b show the FTIR spectra of the untreated and treated FRC and DT posts respectively. Fig. 19a, b revealed the EDX spectra for FRC and DT post. For the FRC posts, there is no obvious difference between the spectra of the untreated post and the plasma-treated posts. The possible reason is that nitrogen is one of the chemical components of the FRC post (UDMA and TGDMA components) and the new expected functional group on the plasma-treated post may also contain terminal nitrogen, thereby the FTIR spectra of them were not different. However, EDX has shown the increasing of nitrogen element from 1.88 to 6.60 wt% after the post was treated by plasma. With the small increasing in nitrogen, the differences of FTIR spectra between both of them may not be detected. However, FTIR spectra have shown that both of them contained C-N bond (amines component) at the peak around 1000-1350 cm⁻¹ (a in fig. 18a). For the DT posts, the chemical component of the polymer matrix is epoxy resin that is absolutely absence of nitrogen, so the spectra of plasma treated post showed the new peak of nitrogen bond. Peaks around 1000-1350 cm^{-1} , 1550 cm^{-1} , and 3100-3500 cm^{-1} (a, b, and c in fig. 18b) can be assigned as C-N, N=O (nitro component), and N-H (primary and secondary amines and amides, stretch type) respectively. In addition, EDX of plasma treated-DT post also revealed an increasing of nitrogen (from 0 to 3.76 wt%). Based on these results, the induced functional group on the FRC and the DT posts that performed by He+N₂ plasma treatment can be assumed as nitrogen functional group.

No significant different in spectra was found, peak around 1000-1350 cm⁻¹ (a) can be assigned as C-N bond.

C-N, N=O, and N-H bonds respectively.

49

3.4 Results of part 3

3.4.1 Results of division 1: Effect of plasma treatment time and hydrothermal storage condition

The tensile-shear bond strength values (MPa) of all plasma treatment time groups in different storage conditions (room temperature and 37 °C deionized water for 7 days) for FRC posts were displayed in table 10 and fig. 20. Two-way ANOVA revealed that the tensile-shear bond strength was significantly influenced by the treatment time, the storage condition, and their interaction (p<0.05) (table 11). Tukey's test revealed significant different in tensile-shear bond strength between the two conditions at the treatment time 3, 5, 10, 15, and 30 minutes (p<0.05). In water storage condition at 37 °C, there were no significant differences in tensile-shear bond strength among all the treatment time groups.

Table 10 Means (MPa) \pm s.d. of the tensile-shear bond strength calculated for all treatment time groups in both storage conditions for the FRC posts.

Storage condition		
	Room temp. (25 °C)	In water 37 °C
Treatment time		
Control	13.85±0.63 ^a	14.03±3.33 ^a
Plasma 30 sec	13.62 ± 1.90^{a}	13.17 ± 1.97^{a}
Plasma 1 min	13.63 ± 1.65^{a}	13.85 ± 1.60^{a}
Plasma 3 min	23.48±3.08 ^b	14.95±1.56 ^a
Plasma 5 min	23.10±3.35 ^b	14.75 ± 2.08^{a}
Plasma 10 min	29.37±3.36°	13.58 ± 1.40^{a}
Plasma 15 min	$25.53 \pm 1.40^{b,c}$	11.75 ± 8.83^{a}
Plasma 30 min	24.02 ± 2.90^{b}	13.48 ± 1.43^{a}

Different alphabet denotes significant differences at p<0.05 **Copyright**[®] [©] by Chiang Mai University hts reserve rig

Table 11 Two-way ANOVA revealed p-value<0.001 for plasma treatment time (time), storage condition (condition), and their interaction (time*condition) for FRC posts.

Figure 20 Tensile-shear bond strengths (MPa) for all treatment time groups in both storage conditions for the FRC posts.

Table 12 and fig. 21 displayed the tensile-shear bond strength values (MPa) of all plasma treatment time groups for DT post. Two-way ANOVA revealed that the tensile-shear bond strength was significantly influenced by the treatment time, the storage condition, and their interaction (p<0.05) (table 13). Tukey's test revealed significant different in tensile-shear bond strength among the two storage conditions at the treatment time 5, 10, 15, and 30 minutes (p<0.05). There were significant

differences in tensile-shear bond strength between the control group and the treatment time groups at 30 seconds, 1, 3, 10, and 15 minutes which storage in 37 °C deionized water.

Table 12 Means (MPa) \pm s.d. of the tensile-shear bond strength calculated for all treatment time groups in both storage conditions for the DT posts.

Storage condition	Room temp. (25 °C)	In water 37 °C
Treatment time		
Control	13.90±1.26 ^a	12.01±1.54 ^a
Plasma 30 sec	19.93±1.23 ^b	19.06±3.34 ^b
Plasma 1 min	19.93±2.10 ^b	19.62±3.37 ^{b,e}
Plasma 3 min	21.42±3.51 ^b	19.83±3.33 ^{b,e}
Plasma 5 min	26.60±2.09 ^c	16.90±3.52 ^{a,b}
Plasma 10 min	$28.35 \pm 2.60^{c,d}$	21.78±2.03 ^{b,e}
Plasma 15 min	32.68 ± 1.37^{d}	24.25±1.00 ^{b,e}
Plasma 30 min	$31.80\pm2.47^{c,d}$	17.05±2.7 ^{a,b}

Different alphabet denotes significant differences at p<0.05

Table 13 Two-way ANOVA revealed p-value<0.001 for plasma treatment time (time), storage condition (condition), and their interaction (time*condition) for DT post.

	Dependent Varia	ble: MPa		TAK			
		Type III Sum		N P			
	Source	of Squares	df 🚽	Mean Square	F	Sig.	
	Corrected Model	2999.920ª	15	199.995	30.205	.000	
	Intercept	45326.249	1	45326.249	6845.573	.000	
	time	1830.260	7	261.466	39.489	.000	•
	condition	648.015	1	648.015	97.869	.000	
azian!	time * condition	521.645	7	74.521	11.255	.000	
	Error	529.700	80	6.621			
	Total	48855.868	96				
Conveig	Corrected Total	3529.620	95				
CUPYRISI	a. R Squared =	.850 (Adjusted	IR Squared	= .822)		IIIVt	CISILY
		1		U			
	rig	h t	S	re	s e	rν	ed

Tests of Between-Subjects Effects

Figure 21 Tensile-shear bond strengths (MPa) for all treatment time groups in both storage conditions for the DT posts.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved **3.4.2 Results of division 2:** Main factor of hydrothermal condition

In this division, the results were divided into 2 sections.

3.4.2.1 Result of section 1: Thermal effect.

The tensile-shear bond strength values (MPa) for the control and treatment groups of FRC post which storage in 37 °C dry storage condition were displayed in table 14 and fig. 22. Two-way ANOVA revealed that the tensile-shear bond strength was significantly influenced by the plasma treatment, the storage temperature, and their interaction (p<0.05) (table 15). Tukey's test revealed no significant different between control group and plasma treatment time 10 and 30 minutes in dry storage condition. However, there were significant differences between plasma treatment time 10 and 30 minutes that storage in room temperature and that storage in 37 °C dry condition.

Table 14 Means (MPa) \pm s.d. of the tensile-shear bond strength calculated for the control and all treatment groups for the FRC posts in section 1.

Plasma treatment			9
Storage	non	10 min	30 min
Room temp (25 °C)	13.85±0.63 ^a	29.37±3.36 ^b	24.02±2.88°
In chamber 37 °C	16.58±2.24 ^a	15.17±2.76 ^a	14.65±2.21 ^a
In water 37 °C	14.03±3.33 ^a	13.58±1.40 ^a	13.48±1.43 ^a

Different alphabet denotes significant differences at p<0.05

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved Table 15 Two-way ANOVA revealed p-value<0.001 for temperature (temp), plasma treatment (plasma Tx), and their interaction (plasmaTx* temp) for the FRC posts.

Tests of Between-Subjects Effects

Figure 22 Tensile-shear bond strengths (MPa) for the control and all treatment groups for the FRC posts in section 1.

Table 16 and fig. 23 displayed the tensile-shear bond strength values (MPa) for the control and all treatment groups for DT post in section 1. Two-way ANOVA revealed that the tensile-shear bond strength was significantly influenced by the plasma treatment, the storage temperature, and their interaction (p<0.05) (Table 17). Tukey's test revealed significant different between the plasma treatment time 15 and 30 minutes that storage in room temperature and that storage in 37 °C dry condition.

Table 16 Means (MPa) \pm s.d. of the tensile-shear bond strength calculated for the control and all treatment groups of the DT posts in section 1.

Plasma			
treatment			2 0 ·
Storage	non	15 mm	30 min
condition			
Room temp (25 °C)	13.90±1.26 ^{ad}	32.68±1.37 ^b	31.80±2.47 ^b
In chamber 37 °C	14.57±2.41 ^{ad}	21.42±1.89 ^c	20.17±0.95 ^c
In water 37 °C	12.01±1.54 ^a	24.25±1.00 ^c	17.05±2.79 ^d

Different alphabet denotes significant differences at p<0.05

17 Two-way ANOVA revealed p-value<0.001 for temperature (temp), Table plasma treatment (plasmatx), and their interaction (temp*plasmatx) for the DT posts.

Tests of Between-Subjects Effects

	Dependent Varia	ble: MPa	1 2 1		1		
	$\langle \rangle$	Type III Sum	6 14	262/			
	Source	of Squares	O-df	Mean Square	F	Sig.	
	Corrected Model	2021.393ª	5	404.279	132.484	.000	
	Intercept	18044.549	1	18044.549	5913.303	.000	
	temp	503.404	TINT	503,404	164.968	.000	
	plasmatx	1233.932	2	616.966	202.183	.000	
	temp * plasmatx	284.057	2	142.028	46.544	.000	
	Error	91.546	30	3.052			
	Total 🥏	20157.488	36				
2.2	Corrected Total	2112.939	35		.		[
ada	a. R Squared =	: .957 (Adjusted	d R Squared	= .949)	ЛО	DO	

Copyright[©] by Chiang Mai University AII rights reserved

Figure 23 Tensile-shear bond strengths (MPa) for the control and all treatment groups for the DT posts in section 1.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

CHER AGNAI

3.4.2.2 Result of section 2: Hydration effect.

The tensile-shear bond strength values (MPa) for all plasma treatment groups in different storage condition (dry and wet storage conditions) for FRC post were displayed in table 18 and fig. 24. Two-way ANOVA revealed that the tensile-shear bond strength was not significantly influenced by the plasma treatment, the storage condition, and their interaction (p<0.05) (table 19).

Table 18 Means (MPa) \pm s.d. of the tensile-shear bond strength for plasma treatment time 10 and 30 minutes in 37 °C dry and 37 °C wet storage conditions for the FRC posts in section 2.

	Plasma			
	treatment	10 min	30 min	
5 I	Storage condition	6		I'Y
5	Dry (37 °C)	15.17 ±2.76	14.65± 2.21	20te
8	Wet (37 °C)	13.58 ±1.40	13.48 ±1.43	N.S.

Table 19 Two-way ANOVA reveal p-value>0.05 for plasma treatment (plasma Tx), storage condition (condi), and their interaction (plasmaTx*condi) for the FRC posts in section 2.

Tests of Between-Subjects Effects

	Dependent Variable: MPa								
		Type III Sum							
	Source	of Squares	df	Mean Square	F	Sig.	_		
0	Corrected Model	12.175ª	3	4.058	.983	.421			
212	Intercept	4853.570	ncia	4853.570	1175.982	.000	51 I		
CIUCI	plasmaTx	.570		.570	.138	.714	I U		
	condi	11.344	1	11.344	2.749	.113			
Conv	plasmaTx * condi	.260	hiat	.260	.063	.804			
Copyi	Error	82.545	20	4.127		VCIS	ιιγ		
	Total	4948.290	24						
	Corrected Total	94.720	23	res	e r	VP			

a. R Squared = .129 (Adjusted R Squared = -.002)

Figure 24 Tensile-shear bond strengths (MPa) for plasma treatment time 10 and 30 minutes in 37 °C dry and 37 °C wet storage conditions for the FRC posts in section 2.

Table 20 and fig. 25 revealed the tensile-shear bond strength values (MPa) for all plasma treatment groups in different storage condition for DT post in section 2. Twoway ANOVA revealed that the tensile-shear bond strength was not significantly influenced by the storage condition (p<0.05), but it was significantly influenced by the plasma treatment and their interactions (p<0.05) (table 21). Tamhane's test revealed no significant different between the plasma treatment time 15 and 30 minutes that storage in 37 °C dry condition and that storage in 37 °C wet condition.

Table 20 Means (MPa) \pm s.d. of the tensile-shear bond strength for plasma treatment time 15 and 30 minutes in 37 °C dry and 37 °C wet storage conditions for the DT

posts in section	n ² . hy Ch	ianσ M	ai Uni	versitv
P7151	Plasma	14115		versity
	treatment	15 min	30 min	
n n	Storage condition	r e	Ser	veo
	Dry (37 °C)	21.42±1.90 ^{a,b}	20.17 ± 0.95^{a}	
	Wet (37 °C)	24.25±1.00 ^b	17.05 ± 2.79^{a}	

Different alphabet denotes significant differences at p<0.05

Table 21 Two-way ANOVA reveal p-value>0.05 for storage condition (cond) but p-value<0.05 for plasma treatment (plasmatx) and their interaction (plasmatx*cond) for the DT posts in section 2.

