### TABLE OF CONTENTS

| ं भग्नाहासक                                                                                                    | Page |
|----------------------------------------------------------------------------------------------------------------|------|
| Acknowledgement                                                                                                | iii  |
| Abstract (Thai)                                                                                                | iv   |
| Abstract (English)                                                                                             | v    |
| List of tables                                                                                                 | viii |
| List of figures                                                                                                | xi   |
| Chapter 1 Introduction                                                                                         |      |
| 1.1 Statement and significance of the problem                                                                  | 1    |
| 1.2 Rationale                                                                                                  | 6    |
| 1.3 Literature review                                                                                          | 7    |
| 1.3.1 Surface treatment of fiber-reinforced post                                                               | 7    |
| 1.3.1.1 Mechanical treatments                                                                                  | 7    |
| 1.3.1,2 Chemical treatments                                                                                    | 8    |
| 1.3.2 Definition of plasma  1.3.3 Classification of plasma                                                     | 9    |
| 1.3.4 Effect of plasma gas  1.3.5 Bonding enhancement through plasma treatment  1.3.6 Aging effect (stability) |      |
| 1.4 Purpose of the study                                                                                       | 21   |
| Chapter 2 Research design and methodology  2.1 Part1 The studies of bonding efficiency between the             | 22   |
|                                                                                                                |      |

| Plasma treated FRCP and the composite resin               |    |
|-----------------------------------------------------------|----|
| core build-up material and the evaluation of              |    |
| surface roughness of the posts of each plasma             |    |
| treatment group                                           | 23 |
| 2.2 Part 2 The study on the suitable parameters of plasma |    |
| treatment involving the gas pressure, discharge           |    |
| power, and plasma treatment time which induce             |    |
| the optimal bonding efficiency                            | 29 |
| 2.3 Fourier transform infrared spectroscopy (FTIR) for    |    |
| chemical analysis                                         | 31 |
| 2.4 Part 3 The study of hydrothermal effect on bonding    |    |
| stability between the FRCP and composite                  |    |
| core build-up material                                    | 32 |
| Chapter 3 Result                                          |    |
| 3.1 Results of part 1                                     | 36 |
| 3.2 Results of part 2                                     | 40 |
| 3.3 Results of FTIR                                       | 47 |
| 3.4 Results of part 3                                     | 52 |
| Chapter 4 Discussion 4.1 Discussion of part 1             | 63 |
| Copyrig4.2 Discussion of part 2 high Mai Univers          | 66 |
| 4.3 Discussion of part 3                                  | 71 |
| Chapter 5 Conclusion                                      | 76 |
| References                                                | 77 |
| Curriculum vitae                                          | 84 |

#### LIST OF TABLES

| Table 0 9 8 1 2 1 3 6 7 9                                               | Page         |
|-------------------------------------------------------------------------|--------------|
| 1 List of investigated materials.                                       | 24           |
| 2 Means (MPa) $\pm$ s.d. of tensile-shear bond strength for all groups. | 36           |
| 3 Two-way ANOVA revealed p-value<0.01 for the type of the               |              |
| post (type), the type of plasma treatment (treatment), and their        |              |
| interactions (type*treatment).                                          | 37           |
| 4 Means ( $\mu$ m) $\pm$ s.d. of surface roughness calculated for all   |              |
| the treatment groups.                                                   | 38           |
| 5 Means (MPa) $\pm$ s.d. of tensile-shear bond strength calculated      |              |
| for all gas pressure groups for FRC and DT post.                        | 40           |
| 6 Means (MPa) ± s.d. of tensile-shear bond strength calculated          |              |
| for all discharge power groups.                                         | 42           |
| 7 Means (MPa) $\pm$ s.d. of tensile-shear bond strength calculated      |              |
| for all the treatment time groups.                                      | 44           |
| 8 One-way ANOVA revealed p-value<0.01 for FRC post in                   | <b>K</b> 1   |
| plasma treatment time groups.                                           | 44           |
| 9 One-way ANOVA revealed p-value<0.001 for DT post in                   | sity         |
| plasma treatment time groups.                                           | <b>e</b> 450 |
| 10 Means (MPa) $\pm$ s.d. of the tensile-shear bond strength calculated |              |
| for all treatment time groups in both storage conditions for            |              |
| the FRC posts.                                                          | 52           |

| 11  | Two-way ANOVA revealed p-value<0.001 for plasma                      |     |
|-----|----------------------------------------------------------------------|-----|
|     | treatment time (time), storage condition (condition),                |     |
|     | and their interaction (time*condition) for FRC posts.                | 53  |
| 12  | Means (MPa) $\pm$ s.d. of the tensile-shear bond strength            |     |
|     | calculated for all treatment time groups in both storage             |     |
|     | conditions for the DT posts.                                         | 54  |
| 13  | Two-way ANOVA revealed p-value<0.001 for plasma                      |     |
|     | treatment time (time), storage condition (condition),                |     |
|     | and their interaction (time*condition) for DT post.                  | 54  |
| 14  | Means (MPa) $\pm$ s.d. of the tensile-shear bond strength            |     |
|     | calculated for the control and all treatment groups for the          |     |
|     | FRC posts in section 1.                                              | 56  |
| 15  | Two-way ANOVA revealed p-value<0.001 for                             |     |
|     | temperature (temp), plasma treatment (plasma Tx),                    |     |
|     | and their interaction (plasmaTx* temp) for the FRC posts.            | 57  |
| 16  | Means (MPa) $\pm$ s.d. of the tensile-shear bond strength            |     |
|     | calculated for the control and all treatment groups of the           |     |
|     | DT posts in section 1.                                               | 58  |
| 17  | Two-way ANOVA revealed p-value<0.001 for temperature (temp),         | Hl  |
|     | plasma treatment (plasmatx), and their interaction (temp*plasmatx)   | 24  |
| ) } | for the DT posts. by Chiang Mai Univer                               | 58  |
| 18  | Means (MPa) $\pm$ s.d. of the tensile-shear bond strength for plasma | e ( |
|     | treatment time 10 and 30 minutes in 37 °C dry and 37 °C wet          |     |
|     | storage conditions for the FRC posts in section 2.                   | 60  |
| 19  | Two-way ANOVA reveal p-value>0.05 for plasma treatment               |     |
|     | (plasma Tx), storage condition (condi), and their interaction        |     |

| (plasmaTx*condi) for the FRC posts in section 2.                 | 60 |
|------------------------------------------------------------------|----|
| 20 Means (MPa) $\pm$ s.d. of the tensile-shear bond strength for |    |
| plasma treatment time 15 and 30 minutes in 37 °C dry             |    |
| and 37 °C wet storage conditions for the DT posts in section 2.  | 61 |
| 21 Two-way ANOVA reveal p-value>0.05 for storage                 |    |
| condition (cond) but p-value<0.05 for plasma treatment           |    |
| (plasmatx) and their interaction (plasmatx*cond) for             |    |
| the DT posts in section 2.                                       | 62 |
| SIN                          |    |

# ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved

### LIST OF FIGURES

| Figure 9181818                                                         | Page       |
|------------------------------------------------------------------------|------------|
| 1 Schematic illustration of cast metal post used for gaining           |            |
| retention for coronal restoration.                                     | 2          |
| 2 Schematic illustration of each interface between the                 | 3\\        |
| fiber post, dentin and composite resin foundation.                     | 5          |
| 3 Schematic illustration of plasma modification within the plasma      |            |
| reactor.                                                               | 10         |
| 4 Schematic illustration of the reaction mechanisms                    | 7          |
| of plasma surface modifications.                                       | 11         |
| 5 A possible oxidation scheme of O <sub>2</sub> plasma treated PMMA.   | 16         |
| 6 Formation of cross-linking due to free radicals interactions.        | 17         |
| 7 Chemical structures of the investigated materials.                   | 25         |
| 8 Schematic illustration of low pressure plasma generator              |            |
| with fiber-reinforced composite post (FRCP) on the specimen            |            |
| holder at the center of quartz chamber.                                | 25         |
| 9 Schematic illustration of specimen preparation for pull-out test.    | 27         |
| 10 Flow-chart of the experimental procedures in division 1:            | versity    |
| Effect of plasma treatment time and hydrothermal storage condition.    | .V e 33    |
| 11 Flow-chart of the experimental procedures in section 1: Thermal eff | fect. 34   |
| 12 Flow-chart of the experimental procedures in section 2: Hydration 6 | effect. 35 |
| 13 Tensile-shear bond strengths (in MPa) for all groups displayed in a |            |
| box and whisker plot.                                                  | 37         |

| 14 Light microscopic image of the debonded surfaces of FRC                 |     |
|----------------------------------------------------------------------------|-----|
| and DT posts: (a, b) debonded surfaces of FRC Postec: (c, d)               |     |
| debonded surface of DT Light-Post.                                         | 39  |
| 15a Tensile-shear bond strengths (MPa) for all gas pressure groups         |     |
| for FRC post.                                                              | 40  |
| 15b Tensile-shear bond strengths (MPa) for all gas pressure groups         |     |
| for DT post.                                                               | 41  |
| 16a Tensile-shear bond strengths (MPa) for all discharge power             |     |
| groups for FRC post.                                                       | 42  |
| 16b Tensile-shear bond strengths (MPa) for all discharge power             |     |
| groups for DT post.                                                        | 43  |
| 17a Tensile shear bond strengths (MPa) for all the treatment time          |     |
| groups for the FRC posts.                                                  | 45  |
| 17b Tensile shear bond strengths (MPa) for all the treatment time          |     |
| groups for the DT posts.                                                   | 46  |
| 18a FTIR spectra of the untreated post (above) and the plasma-treated      |     |
| post (below) of the FRC post.                                              | 48  |
| 18b FTIR spectra of the untreated post (above) and the plasma treated post |     |
| (below) of the DT posts.                                                   | 49  |
| 19a EDX spectra of the untreated and plasma treated-FRC posts.             | 50  |
| 19b EDX spectra of the untreated and plasma treated-DT posts.              | 51  |
| 20 Tensile-shear bond strengths (MPa) for all treatment time groups        | 2 ( |
| in both storage conditions for the FRC posts.                              | 53  |
| 21 Tensile-shear bond strengths (MPa) for all treatment time groups        |     |
| in both storage conditions for the DT posts.                               | 55  |
| 22 Tensile-shear bond strengths (MPa) for the control and all              |     |

|    | treatment groups for the FRC posts in section 1.                    | 57 |
|----|---------------------------------------------------------------------|----|
| 23 | Tensile-shear bond strengths (MPa) for the control and all          |    |
|    | treatment groups for the DT posts in section 1.                     | 59 |
| 24 | Tensile-shear bond strengths (MPa) for plasma treatment             |    |
|    | time 10 and 30 minutes in 37 °C dry and 37 °C wet storage           |    |
|    | conditions for the FRC posts in section 2.                          | 61 |
| 25 | Tensile-shear bond strengths (MPa) for plasma treatment             |    |
| I/ | time 15 and 30 minutes in 37 °C dry and 37 °C wet storage           |    |
|    | conditions for the DT posts in section 2.                           | 62 |
| 26 | Ion collisions in a sheath between the plasma and a workpiece.      | 67 |
| 27 | Dimethacrylate groups (square label) in TGDMA and UDMA              |    |
|    | of FRC post.                                                        | 69 |
| 28 | oxirane structure (square label) of epoxy resin of DT post.         | 69 |
| 29 | Schematic illustration of hydrogen bond between the                 |    |
|    | Induced-functional groups on the fiber-reinforced post and          |    |
|    | the CH <sub>3</sub> groups in the composite core build-up material. | 73 |

## ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved