TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	iii
ENGLISH ABSTRACT	v
THAI ABSTRACT	viii
TABLE OF CONTENTS	x
LIST OF TABLES	xiv
LIST OF FIGURES	xvi
CHAPTER 1 INTRODUCTION	1
1.1 Problem Statement	1
1.2 Objectives of the Study	6
1.3 Scope of the Study	6
1.4 Novelty	7
1.5 Beneficiaries	7
1.6 Definitions	8
CHAPTER 2 LITERATURE REVIEW	10
2.1 Business Frameworks	11
2.1.1 Research Management	11
2.1.2 Intellectual Capital Theory	40

TABLE OF CONTENTS (CONTINUED)

		Page
2.2 Artific	eial Intelligent Techniques	56
2.2.1	Artificial Intelligent (AI)	56
2.2.2	Expert System	57
2.2.3	Theoretical Foundations	60
2.2.4	Knowledge Representation	68
2.2.5	Ontology Building	75
2.2.6	Searching Problem	88
2.3 Know	ledge Engineering Techniques	95
2.3.1	Knowledge Engineering	95
2.3.2	Ontology in KM	95
2.3.3	Social Network	98
2.3.4	Card Sorting	99
CHAPTER 3 ME	THODOLOGY	104
3.1 First P	Part: In-cooperate Research with CMU Research	n Team
(Pilot Proje	ect) rese	105
3.2 Diffici	ulties from the First Project	115
3.3 Second	d Part: Research Management Framework	116
3.4 Tentat	ive Plan	120

TABLE OF CONTENTS (CONTINUED)

	Page
CHAPTER 4 RESULTS	121
4.1 First Part: Result From Pilot Project	121
4.2 Second Part: Result from New Research Management Framework	158
CHAPTER 5 Finding, Discussion, Future and Conclusion	203
5.1 Finding	203
5.1.1 Research Management	203
5.1.2 Methodology	219
5.2 Discussion	221
5.3 Future Work	228
5.4 Conclusion	234
BIBLIOGRAPHY	236
APPENDICES	253
APPENDIX A Key Researcher Questionnaire	254
APPENDIX B Database Design	259
APPENDIX C Relationship of Table	274
APPENDIX D Layout Design	276
APPENDIX E Query	283

TABLE OF CONTENTS (CONTINUED)

	Page
APPENDIX F List of Key Researchers Separated by	
Faculties/Institutes	287
APPENDIX G Result of Classifying Groups of Vocabulary	
Keyword of Candidate Key Researchers	293
APPENDIX H Result of Set Up Research Clusters	324
CURRICULUM VITAE	351

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table		Page
3.1	Tentative plan	120
4.1	The number of candidate key research from Health Sciences	
	on consent of Research Deputy Deans and Director of	
	The Research Institute for Health Science	122
4.2	The number of candidate key research from Science & Technology	
	on consent of Research Deputy Deans and Director of Science	
	and Technology Research Institute	123
4.3	The number of candidate key research from Social Sciences &	
	Humanities on consent of Research Deputy Deans and	
	Director of The Social Research Institute	124
4.4	The number of candidate key research from Health Sciences	
	on consent of Research Deputy Deans and Director of Science,	
	Technology Research Institute, and CMU research team	125
4.5	The number of candidate key research from Science & Technology	
	on consent of Research Deputy Deans and Director of Science,	
	Technology Research Institute, and CMU research team	125
4.6	The number of candidate key research from Social Sciences &	
	Humanities on consent of Research Deputy Deans, Director of	
	The social research institute, and CMU research team	126
4.7	The number of key research from Health Sciences	132
4.8	The number of key research from Science & Technology	132

LIST OF TABLES (CONTINUED)

Table		Page
4.9	The number of key research from Social Sciences & Humanities	133
4.10	Research cluster of Nanomaterial Science	147
4.11	Research cluster of Sustainable conservation and use of nature and environment	147
4.12	Research cluster of Quality of Thai society	148
4.13	Research cluster of Biotechnology	149
4.14	Research cluster of Local history and tourism	149
4.15	Research cluster of Infections disease	150
4.16	Research cluster of Non-Infections disease	151
4.17	Research cluster of Environment	151
4.18	Research cluster of Information technology	151
4.19	Research cluster of Economic plant and animal	152
4.20	Result of assessment CMU clusters with TCM	153

LIST OF FIGURES

Figure	e 3 9 101 Lipid 8/10 I	Page
2.1	Balance Score Card Model	45
2.2	The Skandia model	47
2.3	Skandia Link Navigator	49
2.4	Intelect model	51
2.5	Knowledge Management Consortium International Model	52
2.6	The architecture of an expert system	58
2.7	Inference process	59
2.8	The example of forward chaining process	66
2.9	The example of backward chaining process	67
2.10	The example of semantic network using arc as property	69
2.11	The example of semantic network using square as property	69
2.12	The example of inheritance and overriding of color property	70
2.13	The example of frame	71
2.14	The example of taxonomy	72
2.15	Example of ontology in researcher domain	73
2.16	The example of classes in pizza domain	76

xvii

Figur	Figure	
2.17	The hierarchical tree of pizza classes in Protégé	76
2.18	The example of subclass of PizzaTopping class	77
2.19	The hierarchical tree of subclass in protégé	77
2.20	The object properties of pizza domain	78
2.21	The object properties of pizza domain in Protégé	79
2.22	Example of domain and range of hasBase	79
2.23	Property type of hasBase	81
2.24	Property type of isBaseOf	82
2.25	The example of datatype properties in pizza domain	82
2.26	The datatype properties of pizza domain in Protégé	83
2.27	The example of quantifier restriction	84
2.28	The example of universal restriction	85
2.29	The example of cardinality restriction	86
2.30	The example of hasValue restriction	87
3.1	The Skandia model apply to judge candidate key researchers	108
3.2	Example of keyword card	110
3 3	Thailand Comnetitiveness Matrix (TCM)	113

xviii

Figure	Alour him	Page
3.4	The meaning of Thailand Competitiveness Matrix	113
3.5	Framework of the first part	117
3.6	Framework of the second part	118
4.1	Analysis IC of Research with Skandia Model	130
4.2	Example of card sorting: Biotechnology cluster	138
4.3	Research performance of candidate key researchers separate by research clusters in faculties of Sciences	139
4.4	River diagram of faculty of Science	139
4.5	Research performance of candidate key researcher separate by subject in faculty of Medicine	140
4.6	River diagram of faculty of Medicine	140
4.7	Researcher performance of biotechnology cluster of CMU	141
4.8	Researcher performance of biotechnology cluster of CMU in graph	142
4.9	Researcher performance of Infection Disease cluster of CMU	142
4.10	Research performance of Infections Disease cluster of CMU in graph	143
4.11	Example of social network - Nanomaterial Science	144
4.12	Example of social network - Nanomaterial Science	145
4.13	Example of social network: Immunology – Toxicology – Biochemistr	v 145

Figu	те о мания	Page
4.14	Example of social network: Immunology – Toxicology – Biochemist	ry 146
4.15	CMU Ontology Commitment	159
4.16	Diagram of inference step for identifying key researchers by using patent information	163
4.17	Class and subclass of Researcher Class in Protégé	164
4.18	Relationship between Patent class and Researcher class	165
4.19	The example of patent condition in Protégé	166
4.20	Condition of patent in Protégé	166
4.21	Creating key researcher's condition in NESSESSARY & SUFFICIENT part	167
4.22	The member of KeyResearcher class from inference step	168
4.23	Diagram of inference step for identifying key researcher	
	by using award information	170
4.24	Class and subclass of researcher in Protégé	171
4.25	Relationship between Award class and Researcher class	172
4.26	AwardPartition Class using for classifying level of award	172
4.27	Award level of each award	173
4 28	The example of award condition in Protégé	174

LIST OF FIGURES (CONTINUED)

Page

Figure

4.29	The example of award condition in Protégé	175
4.30	Condition of patent and award in Protégé	176
4.31	The member of Key researcher from inference step using award and patent condition	176
4.32	Diagram of inference step for identifying key researcher by using publication information	178
4.33	The member of Year class	179
4.34	The example of published years of researcher in Protégé	180
4.35	Key researcher condition with patent, award, and publication in Protégé	181
4.36	The member of Key researcher from inference step using award, patent, and publication condition	181
4.37	Diagram of inference step for identifying key researcher by using impact factor criterion	183
4.38	Diagram of inference step for identifying key researcher by using dynamic impact factor criterion	184
4.39	Diagram of inference step for identifying key researcher by using dynamic impact factor criterion	186
4.40	Class and subclass of Level of Impact Factor in Protégé	187
4.41	Impact_Factor class in Protégé	188

Figure		Pages
4.42	Relationship between Impact_Factor class and Level_of_IF class	189
4.43	Relationship between Researcher class and Impact_Factor class	189
4.44	Level of Impact factor equal 2 in each disciplines and subject	190
4.45	The example of impact factor condition in Protégé	191
4.46	Key researcher condition with patent, award, publication, and Impact Factor	3-191
4.47	Key researcher class for each discipline and subject	192
4.48	The member of Key researcher of all disciplines and subject (Engineering)	193
4.49	CMU Ontology commitment after added three classes: Application, Methodology, and Subject	194
4.50	Subclass of Application, Subject, and Methodology	195
4.51	The new three classes and their subclasses in Protégé	197
4.52	The example of using SPARQL for query a research cluster of	198
0 V I	Tourism Chang Mai University of the research ental any commitment, next including	
4.53	The structure of the research ontology commitment, now including the TCM	199
4.54	Six subclasses of TCM class	201
4.55	Search TCM by travel & tourism	202
5.1	Semantic web stack	225