TABLE OF CONTENTS

		Page
Acknowle	dgement	iii
Abstract		iv
List of Tal	bles	xii
List of Fig	ures	xiv
Chapter 1	Introduction	1
	1.1 Chapter Overview	2
	1.2 Electricity Supply Industry	3
	1.2.1 Overview of Electric Power System	3 3
	1.2.2 Electricity Supply Industry in Thailand	5
	1.3 Power Distribution System Performance and	6
	Research Justification	
	1.4 Research Questions and Assumptions	9
	1.5 Research Methods and Proposed Solution	10
	1.6 Novel Contribution of Research	12
	1.7 List of Publications	13
	1.8 Thesis Organization	14
Chapter 2	Asset Management	15
	2.1 Chapter Overview	16
	2.2 Asset Management	16
	2.2.1 Asset Management Definition and Terminology	17
	2.2.2 Asset Management Framework	18
	2.2.3 Publicly Available Specification: PAS55	21
	2.3 Asset Management in Power Distribution Industry	24
	2.4 New Thought in Distribution Feeder Rehabilitation	26
	2.5 Risk Management	28
Chapter 3	Knowledge Management and Engineering in	32
	Power Delivery Business	
	3.1 Chapter Overview	33
	3.2 Knowledge and Knowledge Management	33
	3.3 Knowledge Engineering	37
	5.5.1 Knowledge Elicitation	37
	3.3.2 Knowledge Engineering Concept	39
	3.3.2.1 Problem-Solving Methods	39
	3.3.2.2 Ontologies	40
	3.4 Application of Knowledge Engineering Methodologies	41
	in Power Distribution System	11
	3.4.1 CommonKADS Knowledge Modeling	41

viii

	3.4.2 Ontology101	48
Chapter 4	Power Distribution Asset Categorization	52
1	4.1 Chapter Overview	52
	4.2 Objective of Asset Categorization	53
	4.3 Categorization Terminologies and Approach	53
	4.3.1 Controlled Vocabulary	54
	4.3.2 Classification	55
	4.3.3 Taxonomy	56
	4.3.4 Ontology	56
	4.3.5 Metamodel	57
	4.4 Information Modeling Language	58
	4.4.1 Unified Modeling Language	58
	4.4.2 eXtensible Markup Language	61
	4.4.3 Resource Description Framework	63
	4.4.4 Common Information Model	67
	4.4.5 Protégé-2000: Knowledge Modeling Tool	69
	4.5 Categorization of power distribution network assets	71
	4.5.1 Requirements for Asset Decision Making	71
	4.5.2 Asset Modeling Process	72
	4.5.3 Proposed Power Distribution Network Asset Model	82
Chapter 5	Risk Assessment for Power Distribution Network	86
2	5.1 Chapter Overview	87
	5.2 Fuzzy logic	87
	5.2.1 Basic Fuzzy Logic Theory	88
	5.2.2 Fuzzy Inference System	96
	5.3 Markov chain	100
	5.3.1 Transition Probability	101
	5.3.2 Probability of Absorption	104
	5.3.3 Markov Process in Asset Condition Assessment	104
	5.4 Fuzzy-Markov Assessment of Distribution	105
	Network Failure Possibility	
	5.4.1 Distribution Feeder Component Deterioration	106
	and Failure	
	5.4.2 Determination of Distribution Feeder Asset	108
	Conditions	
	5.4.3 Asset Deterioration Model and Future Condition Rating	ers 116
	5.4.4 Determination of Feeder Failure Possibility	120
	5.4.5 Combining Together	120
Chapter 6	Distribution System Risk Impact and Resolution	130
Ĩ	6.1 Chapter Overview	130
	6.2 Power Outage Cost	131
	6.2.1 Customer Outage Cost	131
	6.2.1.1 Customer Damage Model	132
	č	

ix

	6.2.1.2 Interrupted Energy Rate	135
	6.2.2 Utility Damage Cost	136
	6.3 Cost Estimation for Utility Investment	130
	6.3.1 Work breakdown structure	137
	6.3.2 Using WBS to Estimate Project Costs	139
	6.3.3 Determination of Resolution Cost	140
	6.4 Total Financial Impact	140
	0.4 Total T manetal impact	142
Chapter 7	Novel Decision Support System for Power	145
	Distribution Network Asset Management	
	7.1 Chapter Overview	146
	7.2 Requirement for Distribution Network Investment	146
	7.3 Multiple Criteria Decision Analysis	147
	7.3.1 Concept of Multicriteria Decision Making	148
	7.3.2 General Process of Multicriteria Decision Making	149
	7.3.3 Analytical Hierarchy Process	151
	7.3.3.1 Pair-wise Comparison	152
	7.3.3.2 Comparison Matrix	154
	7.3.3.3 Priority Vector	155
	7.3.3.4 Consistency	157
	7.4 Decision Support System Architecture	158
	7.4.1 Risk Module	150
	7.4.2 Cost Module	160
	7.4.3 Decision Module	160
	7.4.4 Asset Categorization Module	161
	7.5 Simulation Test	161
	7.5.1 Test Feeder	161
	7.5.2 Determination of Feeder Failure Possibility	161
	7.5.3 Determination of Financial Impact	167
		167
	7.5.4 Performing Multicriteria Decision Analysis	
	7.6 Discussion on the Performance of Decision Support System	173
Chapter 8	Case Studies	176
	8.1 Chapter overview	176
	8.2 Enhancing the Distribution Feeder in Industrial Estate Area	176
	8.2.1 Feeder Data	178
	8.2.2 Determination of Feeder Failure Rate	181
	8.2.3 Determination of Financial Impact	183
	8.2.4 Multicriteria Decision Analysis	183
	8.2.5 Discussion and Analysis	185
	8.3 Conversion of Overhead Distribution Feeders in	186
	World Heritage Site	
	8.3.1 Definition of Problem and Goals	187
	8.3.2 Analysis of Requirement and Constraints	187
	8.3.3 Identification of Alternative Choices	188
	8.3.4 Development of Decision Model Hierarchy	196
	8.3.5 Priority Ranking Using AHP	196

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Tabl	Tables	
3.1	Knowledge management framework	36
3.2	Probes to elicit information in structured interviews	38
3.3	Overview of analytic task	43
3.4	Overview of synthetic task	44
3.5	General characterization of classification template	45
3.6	Classes and object of power distribution cable	46
3.7	General characterization of assessment template	47
3.8	Cases and norms of overhead distribution cable	48
4.1	The main classes with some of the associated attributes	78
	for distribution feeder asset information model	
5.1	Examples of linguistic variables with typical linguistic values	89
5.2	Truth table for five operations that are frequently	92
	applied to proposition	
5.3	Proof of $(p \rightarrow q) \leftrightarrow \neg [p \land (\neg q)]$	93
5.4	Validation of equation (5.11) and (5.12)	93
5.5	Mulit-valued logic operation	94
5.6	The cartesian product of fuzzy sets A and B	95
	using Mamdani implication	
5.7	The example of fuzzy knowledge rules	97
5.8	Fuzzy set application areas in power systems	100
5.9	Technical condition states of distribution assets	114
5.10	Distribution feeder asset components categories and their relative	116
	weights as specified by utility experts	
5.11	Fuzzy inference rules for Markov deterioration model	119
5.12	General idea of the fuzzy sets of linguistic variables	127
5.13	Fuzzy rule base for failure likelihood determination	128
6.1	Average customer damage cost of different customer types in MEA	133
6.2	Average composite customer damage models	135
6.3	Composite customer outage cost in Thailand	136
6.4	Price cap for each customer type in MEA	137
6.5	A typical example WBS of pole installation work	138
6.6	Typical cost components of overhead distribution feeder	140
6.7	Typical cost components of underground distribution feeder	140
6.8	Example of cost estimation of underground feeder	141
7.1	Numerical rating and verbal preference	152
7.2	Number of alternatives and comparison	154
7.3	Formation of comparison matrix	154
7.4	Random consistency index	157
7.5	Condition rating of feeder components	165

xii

Tables	
7.6 Comparison matrix and priority vector of main criteria	170
7.7 Comparison matrix and priority vector of subcriteria	170
under technical matter	
7.8 Comparison matrix and priority vector of subcriteria	171
under social matter	
7.9 Comparison matrix of implementation options against reliability subcriteria	171
7.10 Comparison matrix of implementation options against construction subcriteria	171
7.11 Comparison matrix of implementation options against maintenance subcriteria	171
7.12 Comparison matrix of implementation options against financial criteria	172
7.13 Comparison matrix of implementation options against safety subcriteria	172
7.14 Comparison matrix of implementation options against safety subcriteria	172
7.15 Overall ranking of alternatives	172
7.16 Overall ranking of alternatives when technical criterion	172
is equally important as compared to financial	175
8.1 Outage statistics of Substation KO	177
8.2 Operational and environmental stressors feeder KO412	180
8.3 Condition rating of feeder components	181
8.4 Overall ranking of alternatives when financial criterion	184
is moderately important as compared to technical	
8.5 Overall ranking of alternatives when technical criterion is equally important as compared to financial	184
8.6 Overall ranking of alternatives when technical criterion	185
is moderately important as compared to financial	
8.7 Reliability standard in MEA area	186
8.8 Set of criteria of undergrounding project	188
8.9 Cost of various undergrounding projects	196
8.10 Overall ranking of implementation options	197

Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figu	Figure ALLIA	
1.1	The general configuration of electric power system	4
1.2	The electricity supply industry in Thailand	6
1.3	Decision support framework	12
2.1	Stakeholders in utility business	15
2.2	General asset management framework	19
2.3	Skills and responsibilities in asset management circle	20
2.4	Asset management framework	21
2.5	Scope and vital business context of this PAS	22
2.6	Holistic approach asset management	23
2.7	Asset management system elements	23
2.8	Bathtub curve and asset management processes	25
2.9	The architecture of DSS for power distribution network	27
	asset management	
2.10	Standard risk assessment model	29
2.11	Generic risk management process change	30
3.1	Evolution of knowledge	33
3.2	The general knowledge management model	35
3.3	Overview of knowledge categories in the knowledge model	41
3.4	Hierarchy of knowledge-intensive task type	42
3.5	Classification task template	45
3.6	Assessment task template	48
3.7	Classes and class hierarchy	50
4.1	The LoadBreakSwitch class	59
4.2	Example of Generalization	60
4.3	Example of Association	60
4.4	Example of Aggregation	61
4.5	Example of Composition	61
4.6	XML document describing distribution feeder	62
4.7	Annotated simple XML Schema example describing	63
DDV	the data within a feeder	SILV
4.8	RDF statement as a graph	64
4.9	RDF document of statement shown in figure 4.8	65
	RDF schema of figure 4.8 example	66
	A fragment of the CIM Wires model	67
	A Sample of CIM RDF schema definition	68
	A Sample of CIM RDF document	69
	The representation of ontology in Protégé-2000	70
	An instance of a class Pole	71
4.16	Feeder knowledge representations in RDF graph	79

xiv

Figure

Page

4.17	The corresponding RDF schema of Feeder knowledge representations	81
	Sample of Feeder knowledge representations expressed in RDF/XML	81
	Power distribution network asset model	83
4.20	Asset model showing the formation of distribution feeder	84
5.1	Fuzzy sets on climate temperature	88
5.2	Triangular membership function	91
5.3	Trapezoidal membership function	91
5.4	The fuzzy inference system	96
5.5	Fuzzy sets defining temperature	98
	Transition of states	102
5.7	Membership of condition state at different time steps	105
5.8	Distribution of asset condition grade along its entire age	117
5.9	Fuzzy sets of asset age	118
5.10	Fuzzy sets of asset condition grade	118
	Fuzzy sets of asset deterioration rate	118
	The overall architecture of asset deterioration model	120
5.13	Fuzzy Inference System	121
5.14	Fault causes measured in the EPRI fault study	122
5.15	Stage wise fuzzy reasoning process	126
5.16	Risk assessment engine for distribution feeder	129
6.1	Outage cost to utility and its customers	131
6.2	MEA customer damage cost based on customer type	134
6.3	WBS for power distribution system project	138
6.4	A typical resolution action employed to reinforce distribution	141
	network performance	
6.5	Framework for financial impact evaluation	142
6.6	Loss of fixed asset by prevention replacement	143
7.1	The hierarchical structure of AHP decision model	152
7.2	Pair-wise comparison of three fruits	153
7.3	The overall architecture of DSS for power distribution network asset management	159
7.4	Single line diagram of simulated feeder	162
7.5	Route and equipment location of simulated feeder	163
7.6	Instance of test feeder modeled by Protégé 2000	164
7.7	Condition rating of test feeder	166
7.8	Failure rate contributed from feeder condition rating	167
7.9	Illustration of cost and benefit among options	169
7.10	Investment decision hierarchy	170
8.1	Single line diagram of Substation KO feeder	178
8.2	Line route of feeder KO412	179
8.3	Condition rating of feeder KO412	182
8.4	Failure rate of feeder KO412	182
8.5	Illustration of cost and benefit among options	183
8.6	Feeder rehabilitation decision hierarchy	184
8.7	Direct buried cable installation	190

age
91
92
93
94
95
95
96

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved