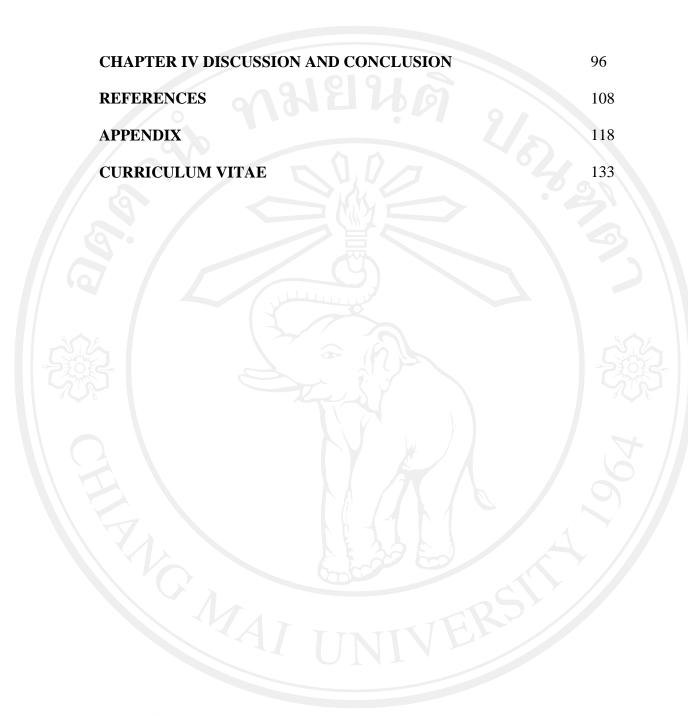
TABLE OF CONTENTS

		Page
ACKNO	WLEDGEMENTS	iii
ABSTRA	ACT IN ENGLISH	v
ABSTRA	ACT IN THAI	viii
TABLE	OF CONTENTS	xi
LIST OF	TABLES	xvii
LIST OF	FIGURES	xix
ABBRE	VIATIONS	xxi
CHAPTI	ER I INTRODUCTION	
1.1	Statement of problem	D
1.2	Literature reviews	5
1.2.1	Antibody	5
1.2.1.1	Polyclonal antibody	5
1.2.1.2	Monoclonal antibody	6
1.2.2	Hybridoma technology	7
1.2.2.1	In vivo immunization	16
1.2.2.2	Developing the screening procedure	17
1.2.2.3	Producing hybridomas	18
1.2.2.3.1	Single cell cloning	18 Versit
1.2.3	Feeder cells	21

1.2.4	Conditioned medium	22
1.2.5	Technologies for enhancing the production of	24
	monoclonal antibody	
1.2.6	In vitro immunization	27
1.3	Objectives	29
СНАРТЕ	CR II MATERIALS AND METHODS	
2.1	Chemicals, antibodies, cell lines and instruments used in	30
	this study are shown in Appendix.	
2.2	Antigen Preparation	30
2.2.1	Hemoglobin Bart's (Hb Bart's)	30
2.2.1.1	Preparation of hemolysates	30
2.2.1.2	Purification of Hb Bart's	30
2.2.2	Hemoglobin E (Hb E) and Hemoglobin F (Hb F)	31
2.1.1	Recombinant Ag85B-BCCP protein	31
2.3	The development of conditioned medium for hybridoma	32
	production	
2.3.1	Preparation of PMA-induced BW and BW conditioned	32
	media	
2.3.2	Study the utilization of conditioned media for	32
	hybridoma single cell cloning	
2.3.2.1	Single cell cloning	32
2.3.3	Study the utilization of conditioned media for	33 Vers
	generation of hybridomas by hybridoma technique	


2.3.3.1	Mouse immunization	33	
2.3.3.2	Hybridoma technique	35	
2.3.4	Determination of antibody response in the immunized	35	
	mice and culture supernatant by ELISA		
2.3.4.1	ELISA for anti-Ag85B-BCCP	35	
2.3.4.2	ELISA for anti-Hb E antibody	36	
2.3.5	Determination of antibody response in the immunized	37	
	mice and culture supernatant by immunofluorescence		
	staining		
2.3.5.1	Lysed whole blood immunofluorescence staining	37	
2.3.6	Analysis of proteins in the produced conditioned	37	
	medium by sodium dodesyl sulfate-polyacrylamide gel		
	electrophoresis (SDS-PAGE)		
2.4	The develop high efficiency hybridoma technology for	38	
	production of monoclonal antibody		
2.4.1	Pre-isolation of B cell strategy	38	
2.4.2	Pre-isolation of antigen specific B cell strategy	39	
2.4.2.1	Isolation of Ag85B-BCCP specific B cell for	39	
	hybridomas production		
2.5	Development of hybridoma techniques for production of	40	
	monoclonal antibody having a desired isotype		
2.5.1	Isolation of IgM and IgG expressing cells for	M_{40} Ve	
	hybridomas production		

xiii

2.5.2	Determination of antibody isotyping by ELISA	41
2.6	In vitro immunization for antibody production	42
2.6.1	To optimize of conditions for <i>in vitro</i> immunization	42
2.6.2	Production of monoclonal antibody by in vitro	43
	immunization	
2.6.3	Determination of anti-Ag85B-BCCP antibody	43
	expressing cells by immunofluorescence staining	
СНАРТЕ	ER III RESULTS	
Part 1: De	evelopment of conditioned medium for hybridoma	45
production	n	
3.1	Generation of non-mitogen containing conditioned	45
	medium	
3.1.1	Production and utilization of non-mitogen containing	45
	conditioned medium on hybridoma single cell cloning	
3.1.2	Employment of the BW conditioned medium in the	49
	hybridoma technique for production of monoclonal	
	antibodies	
3.2	Generation of mitogen (PMA) induced conditioned	55
	medium	
3.2.1	Production and utilization of PMA-induced conditioned	55
	medium for hybridoma single cell cloning	
3.2.2	Employment of PMA-induced conditioned medium in	Un ₅₆ ver
	the hybridoma technique for production of monoclonal	
	ignts res	

antibodies

3.2.2.1	Mice immunization and antibody responses	56
3.2.2.2	Hybridoma production	60
3.2.2.3	Analysis of proteins in the BW conditioned medium,	63
	PMA-induced conditioned medium by sodium dodesyl	
	sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)	
Part 2: Th	e development of high efficiency hybridoma technology	65
for produc	ction of monoclonal antibody	
3.3	Pre-B cell isolation strategy	65
3.3.1	Mice immunization and antibody responses	65
3.3.2	Hybridoma production	67
3.4	Pre-isolation of antigen specific B cell strategy	71
3.4.1	Mice immunization and antibody responses	71
3.4.2	Hybridoma production	73
Part 3: De	evelopment of hybridoma techniques for production of	77
monoclon	al antibody having a desired isotype	
3.5	Generation of monoclonal antibodies which have a	77
	specific isotype	
Part 4: In	vitro immunization for monoclonal antibody production	85
3.6	Optimization of the conditions for in vitro immunization	85
3.7	Production of monoclonal antibody by in vitro	87
	immunization Chiang Mai Ul	

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table		Page
3.1	Supporting of stable hybridoma single-cell growth by BW	47
	conditioned medium	
3.2	Supporting of hybridoma single-cell growth by various	51
	concentrations of BW conditioned medium	
3.3	Supporting of newly formed hybridoma single cell growth	52
	by various concentrations of BW conditioned medium	
3.4	Supporting of hybridoma single-cell growth by PMA-	58
	induced conditioned medium	
3.5	Comparison of using PMA-induced conditioned medium	62
	and BM-Condimed H1 in generation of hybridomas	
	producing anti-Ag85 and Hb E monoclonal antibodies	
3.6	Comparison of Standard fusion method and pre-B cell	69
	isolation fusion strategy in generation of hybridomas	
	produced anti- Hb Bart's monoclonal antibody	
3.7	Using of pre-B cell isolation strategy in generation of	70
	hybridomas produce anti- LDL, HDL, and TFF3	
	monoclonal antibodies	
3.8	Hybridomas generated from total spleen cells, Ag85B-	75
	BCCP specific B cells and negative cells: Experiment 1	
3.9	Hybridomas generated from total spleen cells, Ag85B-	76
	BCCP specific B cells and negative cells: Experiment 2	

3.10	Antibody isotypes produced by the hybridomas generated	82
	from total spleen cells	
3.11	Hybridomas generated from IgM ⁺ cells, IgG ⁺ cells and IgM ⁻	83
	and IgG ⁻ cells	
3.12	Antibody isotypes produced by the hybridomas generated	84
	from IgG^+ cells, IgM^+ cells and IgM^- and IgG^- cells	
3.13	Hybridomas generated from in vitro immunization	95

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figur	e	Page
1.1	The cancer B cell (myeloma) and an antibody-producing cell	9
	(B cell) are fused by polyethylene glycol (PEG) to result in an	
	immortal antibody-producing hybridoma	
1.2	Metabolic pathways relevant to hybrid selection in medium	13
	containing hypoxanthine, aminopterin and thymidine (HAT	
	medium)	
1.3	Pathway of nucleotide synthesis in antifolate drug selection	14
1.4	Drug selections for viable hybridomas	15
1.5	The generation of monoclonal antibodies by hybridoma	20
	technique.	
2.1	Size of single hybridoma clone	34
3.1	Activity of monoclonal antibody produced by hybridomas	53
	supplemented with BW conditioned medium and BM-	
	Condimed H1	
3.2	Comparison of BW conditioned medium and BM-Condimed	54
	H1 in the generation of hybridomas from mice immunized with	
	Hb A ₂ , platelets, CD99 and sugarcane crude leaf extract	
3.3	Antibody responses in BALB/c mice after immunizations with	59
	Ag85B-BCCP and Hb E	

3.4	Proteins analysis of PMA-induced conditioned medium, BM-	64
	Condimed H1 and 10% FBS-IMDM medium using 10% SDS-	
	PAGE	
3.5	Antibody responses of a BALB/c mouse after immunizations	66
	with hemoglobin Bart's	
3.6	Antibody responses in BALB/c mice after immunizations with	72
	Ag85B-BCCP	
3.7	Antibody responses in BALB/c mice after immunizations with	81
	Hb F	
3.8	Antibody responses of spleen cells by <i>in vitro</i> immunizations	86
5.0		80
	with Ag85B-BCCP	
3.9	Antibody responses in culture supernatant after in vitro	88
	immunizations with Ag85B-BCCP (experiment 1)	
3.10	Specific antibody expression on spleen cells after in vitro	89
	immunizations with Ag85B-BCCP (experiment 1)	
3.11	Antibody expression on spleen cells after in vitro	90
	immunizations with Ag85B-BCCP (experiment 1)	
3.12	Antibody responses in culture supernatant after in vitro	91
	immunizations with Ag85B-BCCP (experiment 2)	
3.13	Specific antibody expression on spleen cells after in vitro	92
	immunizations with Ag85B-BCCP (experiment 2)	
2 1 4	+ [©] by Chiang Mai U	niversitv
3.14	Antibody expression on spleen cells after <i>in vitro</i>	
	immunizations with Ag85B-BCCP (experiment 2)	

ABBREVIATIONS

Percentage % Alpha α Beta β Degree Celsius °C Microgram μg Microlitre μl Micromolar μM Ammonium persulfate APS Bovine serum albumin BSA Cluster of differentiation CD Deoxyribonucleic acid DNA Ethylenediamine tetraacetic acid EDTA Enzyme-linked immunosorbent assay **ELISA** Fetal bovine serum FBS Fluorescein isothiocyanate FITC Gram g h Hour Hypoxanthine aminopterine and HAT thymidine Hemoglobin Hb Hypoxanthine guanine HGPRT phosphoribosyltransferase

HRP	Horseradish peroxidase
Ig	Immunoglobulin
IgA	Immunoglobulin A
IgE	Immunoglobulin E
IgD	Immunoglobulin D
IgG	Immunoglobulin G
IgM	Immunoglobulin M
Igs	Immunoglobulins
5 IL	Interleukin
IMDM	Iscove's modified Dulbecco's medium
kDa	Kilodalton
L	Liter
М	Molarity
mAb	Monoclonal antibody
MDP	N-acetylmuramyll-alanyld-isoglutamine
	(muramyldipeptide)
mg	Milligram
ml	Milliliter
NaCl	Sodium chloride
NaHCO ₃	Sodium bicarbonate
ng	Nanogram
OD	Optical density
PBS	Phosphate buffered saline

Phycoerythrin PE Polyethylene glycol PEG Power of hydrogen pН Phorbol-12-myristate-13-acetate **PMA** PWM Pokeweed mitogen RBC Red blood cell RPMI Roswell Park Memorial Institute medium SD Standard deviation SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved