## **TABLE OF CONTENTS**

|                                           | Page      |
|-------------------------------------------|-----------|
| ACKNOWLEDGEMENTS                          | iii       |
| ABSTRACT (in English)                     | v         |
| ABSTRACT (in Thai)                        | vii       |
| TABLE OF CONTENTS                         | ix        |
| LIST OF TABLES                            | xiv       |
| LIST OF FIGUES                            | XV        |
| ABBREVIATIONS                             | xviii     |
| CHAPTER I INTRODUCTION                    | 1         |
| CHAPTER II LITERATURE REVIEWS             | 6         |
| 1. Survivin gene                          | 7         |
| 2. Expression characteristics of survivin | 7         |
| 3. Survivin as a tumor marker             | $e_8^{0}$ |
| 4. Livin gene                             | 9         |
| 5. Expression characteristics of livin    | 10        |
| 6. Livin as a tumor marker                | 10        |

ix

|    |                                                                      | Page |
|----|----------------------------------------------------------------------|------|
| 7. | Auto-antibody: a potential ideal tumor marker                        | 11   |
| CH | IAPTER III OBJECTIVES                                                | 14   |
| CH | IAPTER IV MATERIALS AND METHODS                                      | 15   |
| 1. | Detection of expression level of livin and survivin in tumor tissues | 15   |
|    | with Western blot Analysis                                           |      |
|    | 1.1 Population of the study                                          | 15   |
|    | 1.2 Preparation of cell lysate                                       | 15   |
|    | 1.3 Protein assay                                                    | 16   |
|    | 1.4 Separation of protein by sodium dodecyl sulfate-                 | 17   |
|    | polyacrylamide gel electrophoresis (SDS-PAGE)                        |      |
|    | 1.5 Electrotransfer of separated proteins from the gel into          | 18   |
|    | the membrane                                                         |      |
|    | 1.6 Immunoblotting process                                           | 18   |
| 2. | Detection of autoantibodies against livin and survivin in            | 19   |
|    | lung cancer patients                                                 |      |
|    | 2.1 Production of recombinant livin and survivin tumor antigens      | 19   |
|    | 2.1.1 Construction of expression vector                              | 19   |
|    | 2.1.1.1 Preparation of livin and survivin encoding DNA               | 23   |
|    | for insertion into pET-15b vector                                    |      |
|    | 2.1.1.2 Digestion of pET-15b vector and NdeI-livin-BamHI             | 25   |
|    | PCR product, NdeI-survivin-BamHI PCR product                         |      |
|    | with restriction enzymes                                             |      |

# Page

| 2.1.1.3 Ligation                                                           | 26 |
|----------------------------------------------------------------------------|----|
| 2.1.1.4 Transformation of competent cells                                  | 26 |
| 2.1.1.5 Positive clones screening                                          | 27 |
| 2.1.1.6 Growth of the correct transformant in liquid media                 | 27 |
| and storage                                                                |    |
| 2.1.2 Expression of livin and survivin recombinant proteins                | 28 |
| in bacterial host cells                                                    |    |
| 2.1.2.1 Determination of the level of expressed protein                    | 28 |
| 2.2 Optimization of ELISA                                                  | 29 |
| 2.2.1 Finding optimal antigen concentration                                | 30 |
| 2.2.2 Finding optimal coating buffer                                       | 31 |
| 2.2.3 Finding optimal blocking agent                                       | 31 |
| 2.2.4 Finding optimal serum dilution                                       | 31 |
| 2.3 Evaluation of the established ELISA                                    | 32 |
| 2.3.1 Reproducibility testing of the established ELISA                     | 32 |
| 2.3.2 Verification of autoantibody specificity by                          | 33 |
| pre-absorption experiment                                                  |    |
| 2.3.2.1 Purification of $(His)_6$ -survivin protein by                     | 33 |
| His-Bind Resin chromatography                                              |    |
| 2.3.2.2 Pre-absorption of samples with recombinant survivin                | 35 |
| 2.4 Detection of livin and survivin specific autoantibodies                | 35 |
| in lung cancer patient serum using the generated (His) <sub>6</sub> -livin |    |
| and survivin proteins                                                      |    |

|                                                                         | 1 450 |
|-------------------------------------------------------------------------|-------|
| 2.5 Statistical analysis                                                | 35    |
| CHAPTER V RESULTS                                                       | 36    |
| 1. Detection of expression level of livin and survivin in tumor tissues | 36    |
| and normal tissues with Western blot analysis                           |       |
| 2. Detection of autoantibodies against livin and survivin in            | 39    |
| lung cancer patients                                                    |       |
| 2.1 Production of recombinant livin and survivin tumor antigens         | 39    |
| 2.1.1 Construction of expression vectors (pET-15b-livin and             | 39    |
| pET-15b-survivin)                                                       |       |
| 2.1.2 Expression of livin and survivin recombinant proteins             | 46    |
| in bacterial host cells                                                 |       |
| 2.2 Optimization of ELISA                                               | 49    |
| 2.2.1 Optimization of antigen concentration                             | 49    |
| 2.2.2 Optimization of coating buffer for coating $(His)_6$ -livin       | 52    |
| and (His) <sub>6</sub> -survivin antigens onto a microtiter plate       |       |
| 2.2.3 Optimization of blocking agent                                    | 55    |
| 2.2.4 Optimization of serum dilution                                    | 58    |
| 2.3 Evaluation of the established ELISA                                 | 60    |
| 2.3.1 Reproducibility study of the established ELISA                    | 60    |
| 2.3.2 Verification of autoantibody specificity by                       | 63    |
| pre-absorption experiment                                               |       |
| 2.3.2.1 Purification of (His) <sub>6</sub> -survivin protein            | 63    |

#### Page

|                                                                         | Page |
|-------------------------------------------------------------------------|------|
| 2.3.2.2 Pre-absorption of anti-survivin antibody with                   | 65   |
| purified (His) <sub>6</sub> -survivin protein                           |      |
| 2.4 Detection of livin and survivin autoantibodies in                   | 67   |
| lung cancer patient serum using the generated (His) <sub>6</sub> -livin |      |
| and (His) <sub>6</sub> -survivin proteins                               |      |
| 2.5 Correlations between anti-livin, anti-survivin antibodies           | 69   |
| positivity and clinicopathologic features                               |      |
| CHAPTER VI DISCUSSION                                                   | 70   |
| CHAPTER VII CONCLUSION                                                  | 76   |
| REFERENCES                                                              | 78   |
| APPENDICES                                                              | 90   |
| CURRICULUM VITAE                                                        | 99   |
|                                                                         |      |

#### **LIST OF TABLES**

#### Table

### Page

- 1 Clinicopathologic features of lung tumor samples investigated
   37

   in this study (n=52)
   37
- 2 Correlations of anti-livin and anti-survivin antibodies levels upon
   69 diagnosis with clinicopathological parameters in all patients (n=42)

### **LIST OF FIGURES**

# Figure

## Page

| 1 | Representative western blot analysis of cell lysates                | 38 |
|---|---------------------------------------------------------------------|----|
|   | (T = tumor tissue and N = normal tissue) from lung cancer patients. |    |
| 2 | Agarose gel analysis showing the obtained livin PCR products using  | 42 |
|   | NdeIlivin and livinBamHI as primers.                                |    |
| 3 | Agarose gel analysis showing the obtained survivin PCR products     | 42 |
|   | using NdeIsurvivin and survivinBamHI as primers.                    |    |
| 4 | An example of agarose gel analysis of PCR products to verify the    | 43 |
|   | appropriate ligation between pET-15b vector and livin DNA in        |    |
|   | ligation mixture.                                                   |    |
| 5 | An example of agarose gel analysis of PCR products to verify        | 43 |
|   | the appropriate ligation between pET-15b vector and suvivin DNA     |    |
|   | in ligation mixture.                                                |    |
| 6 | Agarose gel analysis of antibiotic resistant colonies screening for | 44 |
|   | pET-15b-livin vector uptaking clone by PCR.                         |    |
| 7 | Agarose gel analysis of antibiotic resistant colonies screening for | 44 |
|   | pET-15b-survivin vector uptaking clone by PCR.                      |    |
| 8 | Agarose gel analysis of restriction enzyme digested products to     | 45 |
|   | confirm the obtained positive colony of livin.                      |    |

XV

| Figure                                                                             |        |  |
|------------------------------------------------------------------------------------|--------|--|
| 9 Agarose gel analysis of restriction enzyme digested products to                  | 45     |  |
| confirm the obtained positive colonies of survivin.                                |        |  |
| 10 Western blot analysis of hexahistidine-livin fusion protein                     | 47     |  |
| express in <i>E.coli</i> DE3 and DE3pLysS cells using                              |        |  |
| anti-histidine mAb and anti-livin mAb.                                             |        |  |
| 11 Western blot analysis of hexahistidine-survivin fusion protein                  | 48     |  |
| express in <i>E.coli</i> DE3 and DE3pLysS cells using                              |        |  |
| anti-histidine mAb and anti-survivin mAb.                                          |        |  |
| 12 Optimization of the concentration of His <sub>6</sub> -livin antigen to be      | 50     |  |
| coated onto an ELISA plate.                                                        |        |  |
| 13 Optimization of the concentration of His <sub>6</sub> -survivin antigen to be   | 51     |  |
| coated onto an ELISA plate.                                                        |        |  |
| 14 Finding the most suitable buffer for coating (His) <sub>6</sub> -livin antigen  | 53     |  |
| onto microtiter plate.                                                             |        |  |
| 15 Finding the most suitable buffer for coating (His) <sub>6</sub> -survivin antig | gen 54 |  |
| onto microtiter plate.                                                             |        |  |
| 16 Finding the most suitable blocking agent for detection of                       | 56     |  |
| anti-livin autoantibody.                                                           |        |  |
| 17 Finding the most suitable blocking agent for detection of                       | 57     |  |
| anti-survivin autoantibody.                                                        |        |  |
| 18 Finding the most suitable serum dilution for detection of anti-livi             | in 59  |  |

and anti-survivin antibodies.

| Figure |                                                                                  |    |
|--------|----------------------------------------------------------------------------------|----|
| 19     | The quality control chart of livin's OD of the control serum by                  | 61 |
|        | established ELISA.                                                               |    |
| 20     | The quality control chart of survivin's OD of the control serum                  | 62 |
|        | by established ELISA.                                                            |    |
| 21     | Coomassie blue stain of polyacrylamide gel showing preliminary                   | 64 |
|        | purification process of His <sub>6</sub> -survivin fusion protein using affinity |    |
|        | chromatography.                                                                  |    |
| 22     | Pre-absorption of anti-survivin mAb and sera from lung cancer                    | 66 |
|        | patients with purified recombinant survivin protein.                             |    |
| 23     | Detection of antibodies response to livin and survivin by                        | 68 |
|        | established ELISA.                                                               |    |

## **ABBREVIATIONS AND SYMBOLS**

| bp                             | base pair                  |
|--------------------------------|----------------------------|
| cDNA                           | complementary DNA          |
| °C                             | degree Celsius             |
| CV                             | coefficient of variation   |
| DNA                            | deoxyribonucleic acid      |
| ECL                            | enhanced chemiluminescence |
| g                              | gram                       |
| HC1                            | hydrochloride              |
| His                            | histidine                  |
| (His) <sub>6</sub> -livin      | hexahistidine tagged livin |
| (His) <sub>6</sub> -survivin   | hexahistidine tagged       |
| survivin                       |                            |
| IgG                            | immunoglobulin G           |
| เห็กริบหาวิทยาส                | kilobase                   |
| kDa                            | kilo-Dalton                |
| pyright <sup>©</sup> by Chiang | litre University           |
| m rights r                     | Cmililitre C C C           |
| mM                             | millimolar                 |
| mRNA                           | messenger RNA              |
| Μ                              | molar                      |

xviii

xix

| nm                    | nanometer                      |
|-----------------------|--------------------------------|
| NaCl                  | sodium chloride                |
| NaOH NaOH             | sodium hydroxide               |
| OD OD                 | optical density                |
| PBS                   | phosphate-buffered saline      |
| rpm                   | revolution per minute          |
| RNA                   | ribonucleic acid               |
| SD                    | standard deviation             |
| SDS                   | sodium dodesyl sulfate         |
| SDS-PAGE              | sodium dodesyl sulfate-        |
|                       | polyacrylamide gel             |
|                       | electrophoresis                |
| TEMED                 | N,N,N',N'-tetramethylethyllene |
|                       | diamine                        |
| Tris                  | tris(hydroxymethyl)            |
|                       | aminomethane                   |
| Tris-HCl              | tris(hydroxymethyl)            |
|                       | aminomethane hydrochloride     |
| <sup>µ</sup> rights r | microlitre                     |
| μg                    | microgram                      |
| α                     | alpha                          |
| β                     | beta                           |
| (v/v)                 | volume: volume ratio           |

