TABLE OF CONTENTS

	pa	ıge
ACKNOWLEDGMENT		iii
ABSTRACT		iv
LIST OF TABLES		xii
LIST OF FIGURES	x	iiv
LIST OF ABBREVIATIONS	,	xvi
CHAPTER		
I GENERAL INTRODUCTION		1
1. Cellular drug resistance		1
1.1 Reduction in activity of DNA to	opoisomerase	1
1.2 Down-regulation of apoptosis		2
1.3 Changes in pH distribution in the	he cell	2
1.4 Overexpression of transporter p	proteins	3
1.4.1 P-glycoprotein		4
1.4.2 Multidrug resistance association	ociated protein (MRP1)	5
2. Cellular energetic state and multidrug	g resistance phenotype	7
3. ABC-transporters in parasites related	to ABC transporters	8
in human cancer		
4. Strategies to overcome multidrug resi	istance	9
5. Artemisinin and its derivatives	190100011	10
OBJECTIVES	σ Mai Universi	11
REFERENCES	8 Mai Olliveisi	13
II RHODAMINE B AS A MITOCHONDI	RIAL PROBE	20
FOR MEASUREMENT AND MONITO	ORING OF	
MITOCHONDRIAL MEMBRANE PO	TENTIAL IN	
DRIIC SENSITIVE AND DESISTANT	TCFIIC	

ABSTRACT	۷۱
1. INTRODUCTION	22
2. MATERIALS AND METHODS	23
2.1 Cell culture	23
2.2 Drugs and chemicals	23
2.3 Flow cytometric assay	23
2.4 Spectrofluorometric assay	24
2.5 Measurement of ATP in cell extracts	24
2.6 Reduction of 3-(4,5-Dimethyl-2-thiazolyl)-2,5-	24
diphenyl-2H-tetrazolium bromide (MTT)	
3. RESULTS AND DISCUSSION	24
3.1 Intracellular accumulation of rhodamine B by flow cytometry:	24
3.2 Estimation of the mitochondrial membrane potential	26
by spectrofluorometry	
3.2.1 Drug-sensitive cells	27
3.2.2 Drug-resistant cells	30
3.3 Determination of cellular ATP contents	33
4. CONCLUSION	34
5. REFERENCES	35
III ASSESSMENTS OF THE LIVING DRUG-SENSITIVE AND -	38
RESISTANT CELLS RESPONSE TO ARTEMISININ,	
ARTESUNATE AND DIHYDROARTEMISININ BY ¹ H-NMR	
SPECTROSCOPY AND BIOCHEMICAL STUDIES	
ABSTRACT	39
1. INTRODUCTION	_40
2. MATERIALS AND METHODS	41
2.1 Drugs and chemicals	41
2.2 Cell lines, cell culture and cytotoxicity assay	41
2.3 Induction of apoptosis.	42
2.4 Cytofluorometric staining of the cells.	42

	2.5 NMR analysis	42
	2.6 Flow cytofluorometric determination of cellular acridine	43
	orange uptake	
	3. RESULTS	43
	3.1 ¹ H–NMR spectra	43
	a) ¹ H-NMR spectra of untreated cells	43
	b) ¹ H–NMR spectra of treated cells	46
	3.2 Determination of apoptosis by using flow cytometer	47
	3.3 Determination of intracellular pH and intraluminal of	47
	lysosomal pH	
	4. DISCUSSION	49
	5. REFERENCES	51
IV	MODULATION OF MULTIDRUG RESISTANCE BY	54
	ARTEMISININ, ARTESUNATE AND DIHYDRO-	
	ARTEMISININ IN K562/ADR AND GLC4/ADR	
	RESISTANT CELL LINES	
	ABSTRACT	55
	1. INTRODUCTION	55
	2. MATERIALS AND METHODS	56
	2.1 Cell Culture and Cytotoxicity Assay	56
	2.2 Drugs and chemicals	57
	2.3 Cellular drug accumulation	57
	2.4 Determination of mitochondrial membrane potential	58
	2.5 Measurement of ATP in cell extracts	60
	3. RESULTS AND DISCUSSION	60
	3.1 Co-treatment using pirarubicin and qinghaosu or	60
	doxorubicin and qinghaosu	
	3.2 Influence of artemisinin, artesunate and dihydro-	64
	artemisinin on cellular drug accumulation	
	3.3 Effect of artemisinin, artesunate, and dihydroartemisinin	65
	on mitochondrial function	

	4. REFERENCES	67
v	GERNERAL DISCUSSION AND CONCLUSION	70
APPEND	IX	
A	PROTON NMR VISIBLE MOBILE LIPID SIGNALS	74
	IN SENSITIVE AND MULTIDRUG RESISTANT K562	
	CELLS ARE MODULATED BY RAFTS.	
	ABSTRACT	75
	1. INTRODUCTION	76
	2. MATERIALS AND METHODS	77
	2.1 Chemicals	77
	2.2 Cell culture	77
	2.3 Cholesterol quantification	77
	2.4 Cholesterol extraction using methyl-β-cyclodextrin	77
	2.5 Proliferation	77
	2.6 Caveolin-1 detection: western-blot	78
	2.7 Triton treatment	78
	2.8 Sphingomyelinase treatment	78
	2.9 NMR analysis	78
	3. RESULTS	79
	3.1 Cholesterol quantification	79
	3.2 Cell proliferation after incubation with methyl-	80
	β–cyclodextrin	
	3.3 Caveolin-1 expression: Western-Blot	81
	3.4 ¹ H–NMR spectra	81
	a) Incubation with methyl-β-cyclodextrin	81
	b) Triton X-100 and sphingomyelinase treatments	83
	4. DISCUSSION	84
	5. CONCLUSIONS	87
	6 REFERENCES	87

В	DECREASE OF P-GLYCOPROTEIN ACTIVITY IN	90
	K562/ADR CELLS BY MβCD AND FILIPIN AND	
	LACK OF EFFECT INDUCED BY CHOLESTEROL	
	OXIDASE INDICATE THAT THIS TRANSPORTER	
	IS NOT LOCATED IN RAFTS	
	ABSTRACT	91
	1. INTRODUCTION	92
	2. MATERIALS AND METHODS	93
	2.1 Cell lines and culture	93
	2.2 Drugs and chemicals	93
	2.3 Determination of the cholesterol content of K562 cells	93
	2.4 Cellular anthracycline accumulation	94
	2.5 Determination of the P-gp-mediated efflux of	95
	anthracyclines	
	2.6 Treatment of cells with MβCD	97
	2.7 Treatment of cells with filipin	97
	2.8 Incorporation of cholesterol into cholesterol-depleted	97
	cells	
	2.9 Treatment of cells with cholesterol oxidase.	97
	2.10 Isolation of "light" and "heavy" membrane fractions	97
	2.11 Western blotting measurement of P-glycoprotein	98
	expression	
	2.12 Localization of ganglioside GM1.	99
	3. RESULTS	99
	3.1 Non-esterified membrane cholesterol in sensitive	99
	and resistant cell lines.	
	3.2 Effect of MβCD treatment on P–gp–mediated	99
	anthracycline transport.	
	3.3 Effect of cholesterol oxidation on P-gp activity.	101
	3.4 Effect of filipin on P-gp functionality.	102
	3.5. Assignment of source of membrane fractions	102

4. DISCUSSION

4. DISCUSSION	103
5. REFERENCES	107
CURRICURUM VITAE	112
ANELLIA UNIVE	
	ยเชียงใหม่

LIST OF TABLES

CHAPTE	RII	page
Table	The mean coefficient of kinetics of rhodamine B uptake	29
	$(K^{\dagger}_{\text{rhoB}})$, the mean coefficient of kinetics of MTT uptake	
	(K^{\dagger}_{MTT}) , the mean coefficient of MTT-reduction (k^{\dagger}_{MTT})	
	reduction) by cells, and the absolute mitochondrial membrane	
	potential values determined by using rhodamine B as	
	molecular probe.	
Table 2	Lipophilic cations used to estimate the mitochondrial	3 29
	membrane potential ($\Delta \Psi_{m}$).	
СНАРТЕ	RIII \	
Table 1	NMR signals integration reported to creatine peak integra tion	44
	measured on K562, GLC4, K562/adr and GlC4/adr spectra.	
Table 2	NMR peak ratios measured on K562, GLC4, K562/adr and	45
	GlC4/adr spectra obtained from the series of experiments	
	described in the table 1.	
CHAPTER	IV	
Table 1	Pattern of Cytotoxicity of Artemisinin, Artesunate and	61
	Dihydroartemisinin.	
Table 2	MDR reversing pattern of Artemisinin, Artesunate and	61
	Dihydroartemisinin.	
APPENDIX	XA 15 THE TOTAL CHILLING	
Table 1	Quantification of cholesterol in K562 cells.	79
Table 2	NMR peak ratios measured in K562wt and K562adr spectra.	82
Table 3	NMR peak ratios measured in K562wt and K562adr spectra.	82
APPENDIX	(B)	
Table 1	Percentage of cellular cholesterol content after treatment	99
	with different MβCD concentrations for various times.	

LIST OF FIGURES

		page
CHAPTER	I	
Figure 1.	Topology of the human P-glycoprotein.	6
Figure 2.	Model of Multidrug resistance associated protein (MRP1).	7
Figure 3.	Chemical structure of qinghaosu and its derivatives.	10
CHAPTER	II	
Figure 1.	Typical histograms of cell-rhodamine B bound fluorescence:	25
Figure 2.	Typical histograms of cell-rhodamine B bound fluorescence:	27
Figure 3.	Typical kinetics of the uptake of rhodamine B by cells.	30
Figure 4.	Typical kinetics of the uptake of rhodamine B by cells.	31
Figure 5.	Typical histograms of cell-rhodamine B bound fluorescence	32
Figure 6.	Intracellular ATP levels of drug-sensitive and MDR cells.	33
Figure 7.	Comparative cytotoxicity of pirarubicin to drug-sensitive cells;	34
CHAPTER	m / I I I I I I I I I I I I I I I I I I	
Figure 1.	¹ H-NMR spectra obtained from K562, GLC4, K562/adr	46
	and GlC4/adr cells.	
Figure 2.	Representative biparametric histrogram of an Annexin V-	48
	FITC versus PI of GLC4/adr cells:	
Figure 3.	Apoptosis-inducing activity of dihydroartemisinin against	49
	K562, GLC4, K562/adr and GlC4/adr cells. The total	
	apoptosis presents as a function time and concentrations	
Figure 4.	Changes in ratios of red to green fluorescence after 24 h	50
(☑), 48 h (圖) and 72 h (圖) treatment using indicated	
	concentration of dihydroartemisinin in (a) K562 and (b)	
	K562/adr cells.	

CHAPTER IV

Figure 1. Chemical Structure of Qinghaosu	57
Figure 2. The efficacy (δ) of molecules to enhance the cytotoxicity	62
of pirarubicin and doxorubicin for K562/adr and	
GLC4/adr.	
Figure 3. Effect of qinghaosu on pirarubicin (THP) accumulation	63
in K562/adr cells.	
Figure 4. Efficacy of artemisinin (\square), artesunate (o) and	64
dihydroartemisinin (Δ) to inhibit the P-glycoprotein-	
mediated THP efflux.	
Figure 5. (a) Typical kinetics of the uptake of rhodamine B by cells.	65
Figure 6. Variation of $\Delta \Psi_m$ (% of control) as a function of	66
artemisinin (), artesunate (o) and dihydroartemisinin	
(Δ) concentration in (a) K562, (b) K562/adr, (c) GLC4	
and (d) GLC4/adr cells.	
Figure 7. Intracellular ATP levels and the effect of 5 μM	67
artemisinin, artesunate or dihydroartemisinin on intracellular	
ATP levels of K562/adr and GLC4/adr cells.	
APPENDIX A	
Figure 1. K562wt cells and K562adr cells were incubated for 2 hours	80
in medium alone.	
Figure 2. K562adr resistance modulation after MCD treatment.	81
Figure 3. NMR proton spectra obtained at D3 on K562wt (left side)	83
and K562adr (right side) on control cells (top spectra) or	
treated with 5 mM MCD during 2 hours (bottom spectra).	
Figure 4. K562wt ¹ H-NMR spectra: effects of Triton X-100 and	84
sphingomyelinase treatments.	
Figure 5. K562adr ¹ H-NMR spectra: effects of Triton X-100 and	85
sphingomyelinase treatments.	

APPENDIX B

Figure 1.	Spectrofluorometric method for the quantification of the	95
	cellular non esterified cholesterol.	
Figure 2.	Time course of uptake of pirarubicin (PIRA) by K562	96
	cells after incubation with M βCD.	
Figure 3.	Incorporation of pirarubicin in energy-depleted cells	98
	K562/ADR cells and determination of the active efflux	
	rate (V_a) .	
Figure 4.	Rate of the P-gp-mediated efflux of pirarubicin plotted as	101
	a function of the intracellular free pirarubicin	
	concentration.	
Figure 5.	Rate (Va) of the P-gp-mediated efflux of PIRA as a	102
	function of the percentage of cholesterol in the cells.	
Figure 6.	Effect of cholesterol oxidase on the rate of P-gp-mediated	102
	efflux of pirarubicin and on the cellular cholesterol content.	
Figure 7.	Effect of filipin on the rate of P-gp-mediated efflux of	103
	pirarubicin and on the membrane permeability to doxorubicin.	
Figure 8.	Detection of GM1 and P-gp in K562/ADR cell lysates.	104

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS

MDR Multidrug Resistance

P-gp P-glycoprotein

MRP1-Protein Multidrug Resistance Associated protein

ABC ATP-binding Cassestte

FCS Fetal Calf Serum

ART Artemisinin
ARTS Artesunate

DHA Dihydroartemisinin

MTT 3-(4,5-Dimethyl-2-thiazolyl)-2,5- diphenyl-

2H-tetrazolium bromide (MTT)

CsA Cyclosporine A

THP Pirarubicin

Dox Doxorubicin

 $\Delta \Psi_{m}$ Mitochondrial membrane Potential

K562 Erytromyelogenous leukemia

GLC4 Small lung carcinoma

SDHase Succinate dehydrogenase

%IC Percentage of cell growth inhibition

R.F. Resistance Factor

NMRS Nuclear Magnetic Resonance Spectroscopy

λ Wavelength