
TABLE OF CONTENTS

ix

	Page
1.8.2 Polymer Properties	14
1.9 Previous Work Relevant to This Study	15
1.10 Aims of This Study	20
CHAPTER 2 EXPERIMENTAL METHODS	
2.1 Chemicals, Apparatus and Instruments	22
2.1.1 Chemicals	22
2.1.2 Apparatus and Instruments	23
2.2 Materials	24
2.2.1 Monomer Preparation and Purification	24
2.2.1.1 Synthesis of L-Lactide	24
2.2.1.2 Synthesis and Purification of Tin(II) <i>n</i> -Butoxide	26
2.2.1.3 Purification and Purity Analysis of L-Lactide	27
2.2.1.4 Structural Analyses of L-Lactide by FT-IR	29
and ¹ H-NMR Spectroscopy	
2.1.1.5 Purification of <i>ɛ</i> -Caprolactone by	33
Adams UN Vacuum Distillation 218801	ήIJ
2.2.2 Catalyst and Initiator Purification	-34
2.2.2.1 Stannous Octoate	34
2.2.2.2 1-Hexanol	35
2.3 Synthesis of poly(L-lactide- <i>co-ɛ</i> -caprolactone), PLC 50: 50	35

copolymers.

		Page
2.3.1	Synthesis of Poly(L-lactide-co-&-caprolactone),	38
	PLC 50:50 mole% Copolymers : Small Scale	
0	Synthesis (25 g)	
2.3.2	Synthesis of Poly(L-lactide-co-&-caprolactone),	38
	PLC 50:50 mole% Copolymers : Medium Scale	
S	Synthesis (250 g)	
2.3.3	Synthesis of Poly(L-lactide-co-&-caprolactone),	38
	PLC 50:50 mole% Copolymers : Large Scale	
30,5	Synthesis (500 g)	
2.4 Chara	cterization Methods	39
2.4.1	Fourier Transform Infrared Spectroscopy (FT-IR)	39
2.4.2	Nuclear Magnetic Resonance (NMR) Spectroscopy	40
2.4.3	Gel Permeation Chromatography (GPC)	40
2.4.4	Dilute-Solution Viscometry	41
2.4.5	Differential Scanning Calorimetry (DSC)	41
2.4.6	Thermogravimetric Analysis (TGA)	42
adans 2.4.7	Mechanical (Tensile) Testing	42
Copyrigh ^{2.4,8}	Dynamic Mechanical Analysis (DMA)	43
2.4.9	Melt Rheology Measurements	45
2.4.10	Fabrication of Small Tubes by Dip-Coating	e 0 47
2.4.11	Fabrication of Small Tubes by Melt Extrusion	48

	Page
CHAPTER 3 RESULTS AND DISCUSSION	
3.1 Synthesis of Poly(L-lactide-co-ɛ-caprolactone), PLC	53
50:50 mole% Copolymers: Small Scale (25 g)	
3.1.1 Effect of the Reaction Time on the Polymer Properties	53
3.1.1.1 Structural Analysis by ¹ H-NMR Spectroscopy	55
3.1.1.2 Copolymer Composition Analysis	61
by ¹ H-NMR Spectroscopy	
3.1.1.3 Molecular Weight Determination by GPC	63
3.1.1.4 Thermal Characterization by DSC Analysis	68
3.1.1.5 Mechanical Properties Determination	72
by Tensile Testing	
3.1.2 Effect of the Reaction Temperature on the Polymer	73
Properties	
3.1.2.1 Carbon-13 Nuclear Magnetic Resonance Spectrometry (¹³ C-NMR)	76
3.1.2.1.1 ¹³ C-NMR Spectra and their	76
adansurgent Interpretations	KL
Copyright 3.1.2.1.2 Copolymers Chain Microstructure (Monomer Sequencing)	.77 Sity
3.1.3 Effect of the Monomer to Initiator Molar Ratio on	e ₈₈ 0
the Polymer Properties	
3.2 Synthesis of Poly(L-lactide- <i>co-ɛ</i> -caprolactone), PLC	93
50:50 mole% Copolymers: Medium Scale (250 g)	

xii

		I uge
3.2.1	Effect of the Reaction Time on the Polymer Properties	93
	3.2.1.1 Thermal Characterization by DSC Analysis	96
3.2.2	Synthesis of Poly(L-lactide-co-&-caprolactone),	99
	PLC 50:50 mole% Copolymers	
	3.2.2.1 Structure and Copolymer Composition Analyses	100
S.	by ¹ H-NMR Spectroscopy	
	3.2.2.2 Copolymers Chain Microstructure	103
224	(Monomer Sequencing) by ¹³ C-NMR	
205	Spectrometry.	
	3.2.2.3 Molecular Weight Determination by GPC	108
E	3.2.2.4 Intrinsic Viscosity Determination by	110
E I	Dilute-Solution Viscometry	
C.	3.2.2.5 Thermal Characterization by DSC Analysis	111
	3.2.2.6 Thermal Characterization by TGA Analysis	111
	3.2.2.7 Mechanical Properties Determination by	112
	Tensile Testing	
ົລູງຊຸ່ມອ	3.2.2.8 Dynamic Mechanical Analysis (DMA)	113
Convright [©]	3.2.2.9 Rheological Properties by Melt Rheology	115
3.2.3	Fabrication of Small Tubes	122
AII II	3.2.3.1 Fabrication of Small Tubes by Dip-coating	e ₁₂₂
	3.2.3.2 Fabrication of Small Tubes by Melt extrusion	123
3.3 Large Sca	ale Synthesis (500 g)	124
3.3.1	Parr Reactor Instrument	125

xiii

Page

	U
3.3.2 Calibration Thermocouple	130
3.3.3 Test Parr Reactor	132
3.3.4 Synthesis of Poly(L-lactide- <i>co-ɛ</i> -caprolactone),	133
PLC 50:50 mole% Copolymers : Large Scale (500	g)
331	
CHAPTER 4 CONCLUSIONS	145
SUGGESTIONS FOR FURTHER WORK	156
REFERENCES	159
RELEVANCE OF THE RESEARCH WORK TO THAILAND	166
APPENDIX	167
VITA	191
AI UNIVERSITY	
UNIV	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table	· 1818189 .	Page
1.1	Some biodegradable polymers used in medicine.	2
2.1	Chemicals used in this research project.	22
2.2	Apparatus and instruments used in this research project.	23
2.3	Main vibrational assignments in the L-lactide infrared spectra.	30
2.4	¹ H-NMR and ¹³ C-NMR chemical shifts and proton assignments	31
	for L-lactide.	
3.1	The effect of the reaction time on the %yield and physical	54
	appearance of PLC copolymers in small scale (25 g) using	
	[M]:[I] molar ratio 100:0.01 mole%, 0.1 mole% SnOct ₂	
	as a catalyst at 120°C.	
3.2	Proton assignments and corresponding chemical shift ranges for	58
	the various resonance peaks in the ¹ H-NMR spectra of the crude	I
ລິບສີ	PLC_S1-S9 copolymers in small scale (25 g).	hIJ
3.3	Proton assignments and corresponding peak area integrations for	59
	the various resonance peaks in the ¹ H-NMR spectra of the crude	
	PLC_S1-S9 copolymers in small scale (25 g).	2 0
3.4	Proton assignments and corresponding chemical shift ranges for	59
	the various resonance peaks in the ¹ H-NMR spectra of the purified	

XV

		I uge
	PLC_S1-S9 copolymers in small scale (25 g).	
3.5	Proton assignments and corresponding peak area integrations	60
	for the various resonance peaks in the ¹ H-NMR spectra of	
	the purified PLC_S1-S9 copolymers in small scale (25 g).	
3.6	Comparison of the initial comonomer feeds with the final	62
	copolymer compositions of the PLC copolymers in small scale (25 g).	
3.7	GPC molecular weight data of crude and purified PLC	67
~	copolymers in small scale (25 g).	
3.8	DSC results of the PLC copolymers in small scale (25 g).	70
3.9	The calculated values of T _g from Fox Equation for the PLC	72
	copolymers in small scale (25 g).	
3.10	The effect of the reaction temperature on the %yield and physical	74
	appearance of PLC copolymers in small scale (25 g) using [M]:[I]	
	molar ratio 100:0.01 mole%, 0.1 mole% SnOct ₂ as a catalyst	
	for 48 hours.	
3.11	The effect of reaction temperature on the final copolymer	74
ลิปส์	composition and weight-average molecular weights of	KIJ
Conv	PLC copolymers in small scale (25 g).	sitv
3.12	Intensities of the various triad peaks of PLC copolymers	85
AII	in small scale (25 g). US I e S e I V	eu
3.13	Characterization results from ¹³ C-NMR of PLC copolymers	86
	in small scale (25 g).	

xvi

3.14	The effect of the monomer to 1-hexanol initiator molar ratio on	89
	the %yield and physical appearance of PLC copolymers in	
	small scale (25 g) using 0.1 mole% SnOct ₂ as a catalyst at 120°C	
	for 48 hours.	
3.15	The effect of monomer to 1-hexanol initiator molar ratio on	89
	the final copolymer composition and weight-average molecular	
	weights of PLC copolymers in small scale (25 g).	
3.16	The PLC polymerization results in medium scale (250 g)	95
3	using [M]:[I] molar ratio 100:0.01 mole%, 0.1 mole% SnOct ₂	
	as a catalyst with different the reaction time at 120°C.	
3.17	DSC results of the PLC copolymers in medium scale (250 g)	98
3.18	The calculated values of T_g from Fox Equation for the PLC	99
	copolymers in medium scale (250 g).	
3.19	Results of the polymerization of PLC copolymer using 0.1	100
	mole% SnOct2 as a catalyst and 0.01 mole% 1-hexanol as initiator	
22	at 120°C for 96 hours in medium scale (250 g).	
3.20	Proton assignments and corresponding chemical shift ranges and	102
Сору	peak area integrations for the various resonance peaks in the	ity
AÍÍ	¹ H-NMR spectra of the crude and purified PLC copolymers in medium scale (250 g).	d
3.21	Comparison of the initial comonomer feeds with the final	103
	copolymer compositions of the crude and purified PLC copolymer	

in medium scale (250 g).

xvii

		Page
3.22	Carbon-13 assignments and corresponding chemical shifts for the	105
	various resonance peaks in the ¹³ C-NMR spectra of crude and	
	purified PLC copolymer in medium scale (250 g).	
3.23	Monomer sequence assignments and intensities for the various	106
	carbonyl carbon peaks in the expanded ¹³ C-NMR spectra of crude	
	and purified PLC copolymer in medium scale (250 g).	
3.24	The results of calculated average monomer sequence lengths	107
	and degree of randomness of PLC copolymer in medium scale (250 g).	
3.25	GPC molecular weight data of crude and purified PLC copolymer	108
	in medium scale (250 g).	
3.26	The shift factor values for used construct a master curve at	116
	reference temperature.	
3.27	The C_1 and C_2 values from WLF equation for used construct	118
	a master curve at reference temperature.	
3.28	Results of the polymerization of PLC copolymer in large scale (500 g).	135

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xviii

LIST OF FIGURES

Fi	911	re
	Su	I C

	Figure	e 91818169	Page
	1.1	Nerve repair methods (a) nerve suture (b) nerve graft and (c) nerve guide	. 4
	2.1	Apparatus used in the synthesis of L-lactide.	26
	2.2	DSC thermogram of purified L-lactide after three recrystallisations.	28
	2.3	Van't Hoff plot of the purity analysis data for the purified L-lactide.	28
	しぼ	(F = mole fraction of sample which has melted)	
	2.4	FT-IR spectrum of the L-lactide used in this work.	30
	2.5	Reference FT-IR and FT-Raman spectra of the L-lactide.	31
	2.6	¹ H-NMR (400 MHz) spectrum of L-lactide used in this work	32
		in CDCl ₃ as solvent at 25.0°C.	
	2.7	¹³ C-NMR (100 MHz) spectrum of L-lactide used in this work	32
		in CDCl ₃ as solvent at 25.0°C.	
	2.8	Reference ¹ H-NMR (below) and ¹³ C-NMR (above) spectra of L-lactide.	33
a	2.9	Vacuum distillation apparatus used for the purification of <i>ɛ</i> -caprolactone.	34
Co	2.10	Apparatus for ROP of PLC (a) small scale, 25 g (b) medium scale, 250 g	
Λ		(c) large scale (Parr Reactor Model 4520), 500 g.	
A	2.11	Apparatus used for polymer re-precipitation.	37
	2.12	Parr Reactor Model 4520 (a) Bench top reactors	39
		(b) temperature controllers.	
	2.13	Lloyds LRX + Universal Mechanical Testing Machine.	43

		I age
2.14	Mettler Toledo DMA/SDTA 861 ^e apparatus.	45
2.15	Bohlin Gemini HR ^{nano} Rotational Rheometer apparatus.	46
	(a) parallel plate geometry (b) the gap between the plates	
2.16	Dip-Coating Apparatus. (a) K wire immersed to copolymer solution	48
	(b) Rotate K wire in horizontal line to evaporate solvent	
2.17	Photograph of the small-scale melt spinning apparatus.	50
	(1) extrusion cylinder block (2) piston (ram)	
~	(3) heater control button (4) ram speed control switch	
Real Providence	(5) thermocouple (6) cooling water bath	
2.18	The various accessories used in pre-formed polymer rod preparation.	51
2.19	The various accessories used in the fabrication small tubes by	51
	melt extrusion.	
2.20	The tubular-shaped die in the fabrication small tubes by melt extrusion.	51
2.21	Schematic diagram of the compression, melting and metering	52
	zones showing the (a) ram, (b) cylinder, (c) band heater,	
	(d) heating block, (e) stainless steel filter mesh, (f) thermocouple,	
ົລູງຜູ	(g) tubular-shaped die and (h) extruded tubes.	í IJ
3.1	% Yield-time profile of PLC copolymers in small scale (25 g).	55
3.2	¹ H-NMR (400 MHz) spectrum of crude PLC_S1 in small scale (25 g).	56
A 3.3	¹ H-NMR (400 MHz) spectrum of purified PLC_S1 in small scale (25 g).	57
3.4	¹ H-NMR (400 MHz) spectrum of crude PLC_S8 in small scale (25 g).	57
3.5	¹ H-NMR (400 MHz) spectrum of purified PLC S8 in small scale (25 g).	58

		Page
3.6	GPC curves of crude PLC copolymers (a) PLC_S1 (b) PLC_S2	65
	(c) PLC_S3 (d) PLC_S4 (e) PLC_S5 (f) PLC_S6 (g) PLC_S7	
	(h) PLC_S8 and (i) PLC_S9 in small scale (25 g).	
3.7	GPC curves of purified PLC copolymers (a) PLC_S1 (b) PLC_S2	66
	(c) PLC_S3 (d) PLC_S4 (e) PLC_S5 (f) PLC_S6 (g) PLC_S7	
	(h) PLC_S8 and (i) PLC_S9 in small scale (25 g).	
3.8	Weight-average molecular weight-time profile of crude and purified	68
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	PLC copolymers in small scale (25 g).	
3.9	Comparison of the DSC thermograms first run of PLC copolymers	69
	in small scale (25 g).	
3.10	Comparison of the DSC thermograms second run of PLC copolymers	70
	in small scale (25 g).	
3.11	The stress-strain curve of PLC_S7 copolymers in small scale (25 g).	73
3.12	%Yield and weight-average molecular weight -temperature profile	75
	of PLC copolymers in small scale (25 g).	
3.13	100 MHz ¹³ C-NMR spectrum of PLC copolymers in CDCl ₃	77
ຄີປຄີ	as solvent in small scale (25 g).	KIJ
3.14	Triad sequences and corresponding structures showing the carbonyl	79
	groups responsible for the respective chemical shift assignments.	sity
<b>A</b> 3.15	Expanded carbonyl region of the 100 MHz ¹³ C-NMR spectrum	e ₈₁ 0
	of crude PLC_T1 in small scale (25 g).	
3.16	Expanded carbonyl region of the 100 MHz ¹³ C-NMR spectrum	82
	of crude PLC_T2 in small scale (25 g).	

		Page
3.17	Expanded carbonyl region of the 100 MHz ¹³ C-NMR spectrum	82
	of crude PLC_T3 in small scale (25 g).	
3.18	Expanded carbonyl region of the 100 MHz ¹³ C-NMR spectrum	83
	of crude PLC_T4 in small scale (25 g).	
3.19	Expanded carbonyl region of the 100 MHz ¹³ C-NMR spectrum	83
	of pure PLC_T1 in small scale (25 g).	
3.20	Expanded carbonyl region of the 100 MHz ¹³ C-NMR spectrum	84
-30	of pure PLC_T2 in small scale (25 g).	
3.21	Expanded carbonyl region of the 100 MHz ¹³ C-NMR spectrum	84
	of pure PLC_T3 in small scale (25 g).	
3.22	Expanded carbonyl region of the 100 MHz ¹³ C-NMR spectrum	85
	of pure PLC_T4 in small scale (25 g).	
3.23	%Yield and weight-average molecular weight-[M]:[I] molar ratio	90
	profile of purified PLC copolymers in small scale (25 g).	
3.24	%Yield and weight-average molecular weight-reaction time profile	94
	of purified PLC copolymers in medium scale (250 g).	
3.25	Comparison of the DSC themograms first run of PLC copolymers	97
Conv	in mediun scale (250 g).	
3.26	Comparison of the DSC themograms second run of PLC copolymers	97
	in mediun scale (250 g).	e a
3.27	¹ H-NMR (400 MHz) spectrum of crude PLC in medium scale (250 g).	101
3.28	¹ H-NMR (400 MHz) spectrum of purified PLC in medium scale (250g).	102

		Page
3.29	100 MHz ¹³ C-NMR spectrum of crude PLC copolymers in	104
	CDCl ₃ as solvent in medium scale (250 g).	
3.30	100 MHz ¹³ C-NMR spectrum of purified PLC copolymers in	104
	CDCl ₃ as solvent in medium scale (250 g).	
3.31	Expanded carbonyl region of the 100 MHz ¹³ C-NMR spectrum	105
	of crude PLC copolymer in medium scale (250 g).	
3.32	Expanded carbonyl region of the 100 MHz ¹³ C-NMR spectrum of	106
~3	purified PLC copolymer in medium scale (250 g).	
3.33	GPC curve of crude PLC copolymer in medium scale (250 g).	109
3.34	GPC curve of purified PLC copolymer in medium scale (250 g).	109
3.35	Double extrapolation plots of the reduced, $\eta_{red}$ , and inherent, $\eta_{inh}$ ,	110
	viscosities against concentration for PLC copolymer	
	in medium scale (250 g).	
3.36	TG thermogram of PLC copolymer in medium scale (250 g).	112
3.37	Stress-strain curve of PLC copolymer in medium scale (250 g).	113
3.38	The E', E" and tan $\delta$ curves as a function of temperature for	114
ลิขส์	PLC copolymer film.	КIJ
3.39	Master curve showing G', G" and $\eta^*$ of PLC at a reference temperature	119
	of 150°C.	
<b>A</b> 3.40	Comparison of the master curve at reference temperatures of	e ol 120
	130°C (gray curves) and 140°C.	
3.41	Comparison of the master curve at reference temperatures of	120
	140°C (gray curves) and 150°C.	

		Page
3.42	Temperature dependence of G', G", tan $\delta$ and $\eta^*$ of PLC copolymer.	121
3.43	(a) Camera (b) Photograph, (c) and (d) SEM images of the PLC	122
	copolymer small tube prepared by dip-coating.	
3.44	(a) Camera (b) Photograph, (b) and (c) SEM images of the PLC	124
	copolymer small tube prepared by melt extrusion.	
3.45	Parr Reactor Model 4520.	125
3.46	(a) 4520 Bench Top Reactors (b) 4843 Temperature Controllers.	125
3.47	The assembly of removable head vessels (a) external (b) internal.	127
3.48	The assembly of 4843 temperature controller	128
3.49	Time-temperature profiles of different zero setting value	132
	(a) -10.0 (b) 0.0 (c) +10.0 in large scale synthesis (500 g).	
3.50	Time-temperature profile of water in the initial operating test.	133
3.51	The dark brown caramel of crude PLC copolymer at 120°C for 96 hours	134
	(Batch 1 in large scale (500 g)).	
3.52	¹ H-NMR (400 MHz) spectrum of crude PLC copolymer at 120°C	136
0 0	for 96 hours (Batch 1 in large scale (500 g)).	1
3.53	¹ H-NMR (400 MHz) spectrum of crude PLC copolymer at 120°C	137
Copy	for 48 hours (Batch 2 in large scale (500 g)).	itv
3.54	Reaction time-temperature profile of PLC copolymer in Batch 2	138
	for large scale (500 g).	
3.55	Reaction time-ammeter module profile of PLC copolymer in	138
	Batch 2 for large scale (500 g).	

Batch 2 for large scale (500 g).

xxiv

### Page

3.56	Expanded carbonyl region of the 100 MHz ¹³ C-NMR spectrum of crude	139
	PLC copolymer at 120°C for 48 hours (Batch 2 in large scale (500 g)).	
3.57	¹ H-NMR (400 MHz) spectrum of crude PLC copolymer at 120°C	140
	for 6 hours (Batch 4 in large scale (500 g)).	
3.58	The transparent flexible solid of crude PLC copolymer at 100°C	141
	for 18 hours (Batch 4 in large scale (500 g))	
3.59	¹ H-NMR (400 MHz) spectrum of crude PLC copolymer at 100°C	141
C.	for 18 hours (Batch 4 in large scale (500 g)).	
3.60	¹ H-NMR (400 MHz) spectrum of crude PLC copolymer at 120°C	143
	for 6 hours (Batch 5 in large scale (500 g)).	
3.61	¹ H-NMR (400 MHz) spectrum of crude PLC copolymer at 120°C	143
	for 9 hours (Batch 5 in large scale (500 g)).	
3.62	¹ H-NMR (400 MHz) spectrum of crude PLC copolymer at 120°C	144
	for 24 hours (Batch 5 in large scale (500 g)).	
3.63	Double extrapolation plots of the reduced, $\eta_{red}$ , and inherent, $\eta_{inh}$ ,	144
viscosities against concentration for PLC copolymer		
ดบด	(a) at 120°C for 6 hours (b) at 120°C for 9 hours and (c) at 120°C	IJ
Соруі	for 24 hours (Batch 5 in large scale (500 g)).	
<b>A</b> 4.1	Schematic representation of (a) the effect of radius on temperature and	153
	(b) the effect of radius on molecular weight.	

XXV

## LIST OF SCHEMES

## SCHEME

### Page

	SCHE	EME NHEIHA	Page
	1.1	Representation of the ROP of a cyclic ester: $R=(CH_2)_{0-3}$ and/or (CHR").	6
	1.2	The reaction pathway for the ROP of a cyclic ester by the	8
		coordination-insertion mechanism.	
	1.3	Reaction schemes for intermolecular and intramolecular	9
		transesterification reactions.	
	1.4	Tin(II) 2-ethylhexanoate or stannous octoate (SnOct ₂ ).	10
	1.5	The main ROP mechanism proposals with SnOct ₂ as catalyst	11
		that the complexation of a monomer and alcohol prior to ROP.	
	1.6	The main ROP mechanism proposals with SnOct ₂ as catalyst	12
		that the formation of a tin alkoxide before ROP.	
	1.7	Conversion of lactic acid into high molecular weight polylactide	12
		requires the preparation of high-purity lactide as the monomer	
80	BC	intermediate. MONSAGE SOL	Kl
Cr	2.1	Chemical structure of L-lactide.	26
	3.1	The main ROP mechanism proposed by Kricheldorf et al. [1995]	91
A	3.2	The main ROP mechanism proposed by Penczek et al. [1998]	e ₉₂
	3.3	Chain alcoholysis by hydroxyl end group.	92

#### xxvi

#### xxvii

# ABBREVIATIONS

	0 9	318196
	LL	L-lactide
	CL	<i>ɛ</i> -caprolactone
	PLL	poly(L-lactide)
	PCL	poly( <i>ɛ</i> -caprolactone)
	DLPLA	poly(DL-lactide)
	LPLA	poly(L-lactide)
	PGA	polyglycolide
	PDO	poly(dioxanone)
	PGA-TMC	poly(glycolide-co-trimethylene carbonate)
	PGA-LPLA	poly(L-lactide-co-glycolide)
	PGA-DLPLA	poly(DL-lactide-co-glycolide)
	LPLA-DLPLA	poly(L-lactide-co-DL-lactide)
	PDO-PGA-TMC	poly(glycolide-co-trimethylene carbonate-co-
â	ງສົກຣົນห	dioxanone)
C	Poly(LL-co-CL), PLC	poly(L-lactide-co-ɛ-caprolactone)
	ROP	ring-opening polymerization
Α	SnOct ₂	stannous octoate reserved
	$Sn(OnBu)_2$	tin(II) <i>n</i> -butoxide
	CDCl ₃	deuterated chloroform
	THF	tetrahydrofuran

## xxviii

FT-IR	fourier transform infrared spectroscopy
¹ H-NMR	proton nuclear magnetic resonance
¹³ C-NMR	carbon-13 nuclear magnetic resonance
DSC	differential scanning calorimetry
TG	thermogravimetry
DMA	dynamic mechanical thermal analysis
GPC	gel permeation chromatography
SEM	scanning electron microscope
M	number-average molecular weight
$\overline{M}_w$	weight-average molecular weight
$\overline{M}_{v}$	viscosity-average molecular weight
$\overline{M}_{w}/\overline{M}_{n}$ , MWD	molecular weight distribution
PD	polydispersity
	AI UNIVER
Tg	glass transition temperature
ลิชาสิทธิ์มห	crystallization temperature melting temperature
Copyright [©]	decomposition temperature University
A E', G' rig	storage modulus <b>e s e r v e o</b>
E" , G"	loss modulus
Tan $\delta$	phase angle lag, the damping
G*	complex shear modulus

xxix	

g	gram
mg	milligram
cm	centimeter
mm	millimeter
μm	micrometer
ml	milliliter
g dl ⁻¹	grams per deciliter
g mole ⁻¹	grams per mole
mmHg	millimeters of mercury
MHz	megahertz
MPa	megapascal
Ра	pascal
°C	degree Celsius
°C min ⁻¹	degree Celsius per minutes
rpm	round per minute

# **ลิขสิทธิ์มหาวิทยาลัยเชียงใหม** Copyright[©] by Chiang Mai University All rights reserved