TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ACKNOWLEDGEMENTS</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>xiii</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER I: INTRODUCTION

- Objectives of this study

 Education/Application advantages of this study

CHAPTER II: LITERATURE REVIEW

1. Biology of Human cytomegalovirus (HCMV)
 - 1.1. Taxonomy
 - 1.2. Viral structure and viral genome
 - 1.3. Viral multiplication
 - 1.3.1. Virus binding and penetration
 - 1.3.2. Viral replication
 - 1.3.3. Regulation of viral gene expression
 - 1.3.4. Viral assembly, maturation, and release
 - 1.4. Target cells of HCMV infection
 - 1.5. Pathogenesis of HCMV infection
 - 1.6. Latency and reactivation
 - 1.6.1. Sites of latency
 - 1.6.2. The latent state
 - 1.6.3. Reactivation from latency
 - 1.7. HCMV transmission
2. Host responses to HCMV infection 13
 2.1. Cell-mediated immunity 13
 2.2. Humoral immunity 13
 2.3 Immune evasion by human cytomegalovirus 14
3. HCMV infection in non-HIV infected population 15
 3.1. HCMV infection in general population 15
 3.2. HCMV infection in pregnant women and infants 15
4. HCMV infection in HIV infected population 16
 4.1. HCMV infection in HIV infected adults 16
 4.2. HCMV infection in HIV infected infants 18 and children
5. Interaction between HCMV and HIV-1 19
 5.1. Role of co-infection 19
 5.2. Receptor 20
 5.2.1. Up-regulation of CD4 co-receptor expression 20
 5.2.2. Induction of alternative HIV receptors 20
 5.2.3. Pseudotype formation 20
 5.3. Cytokine release 21
6. Laboratory diagnosis for HCMV infection 21
 6.1. Virological techniques 21
 6.1.1. Non-molecular methods 22
 6.1.1.1. HCMV culture assay 22
 6.1.1.2. Spin-amplification shell vial assay 22
 6.1.1.3. Antigenemia assay 23
 6.1.2. Molecular methods 23
 6.1.2.1 PCR conventional method 23
 6.1.2.2. Real time PCR assay 24
 6.1.2.3 Others Nucleic acid amplification 26 method
6.2. Serological technique

CHAPTER III: RESEARCH DESIGN, MATERIALS AND METHODS
1. Study population
2. The study design
3. Sample collection
4. Determination of HCMV Infection
 4.1. Detection of IgG antibodies by ELISA technique
 4.2. Detection of IgM antibodies by ELISA technique
 4.3. CMV DNA qualification by real time PCR
 4.3.1. DNA extraction from white blood cell pellets
 4.3.2. Real time PCR probe and primer
 4.3.3. Preparation of HCMV positive control
 4.3.3.1. Transformation of the recombinant plasmid DNA
 4.3.3.2. Screening for the recombinant plasmid DNA in the transformed bacteria
 4.3.3.3. Purification of HCMV recombinant plasmid
 4.3.3.4. Quantitation of the purified HCMV plasmid DNA by spectrophotometry
 4.3.3.5. Quantitation of extracted DNA by the fluorescence assay
5. Categorization of HCMV infection
6. Determination of HIV disease progression
7. Statistical analysis

CHAPTER IV: RESULTS
1. Preparation of standard HCMV gene fragment control by PCR cloning method
2. HCMV infection in children born to HIV-1 infected mothers

2.1. Characteristics of the population

2.2. The rate of HCMV infection within 18 months

2.3. Congenital HCMV infection in infants

2.4. HCMV infection in twins

2.5. Evaluation of risk factors associated with HCMV perinatal transmission in infants born to HIV-1 infected mothers

2.5.1. Maternal risk factors

2.5.2. Infant’s risk factors

2.6. Time of first diagnosis of HCMV infection

2.7. HCMV infection and HIV-1 disease progression within the first 18 months of life

CHAPTER V: DISCUSSION AND CONCLUSION

REFERENCES

APPENDIX

CIRRICULUM VITAE
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The members of Herpesviridae Family.</td>
<td>7</td>
</tr>
<tr>
<td>2. HCMV PCR primers and Taqman® probe information.</td>
<td>38</td>
</tr>
<tr>
<td>3. Mother’s characteristic descriptions.</td>
<td>49</td>
</tr>
<tr>
<td>4. Infant’s characteristic descriptions.</td>
<td>50</td>
</tr>
<tr>
<td>5. Rates of HCMV infection in HIV-1 infected and HIV uninfected infants within 18 months of age.</td>
<td>51</td>
</tr>
<tr>
<td>6. Comparison of HCMV infection in HIV-1 infected and uninfected infants within 18 months of age.</td>
<td>52</td>
</tr>
<tr>
<td>7. Comparison of congenital HCMV infection in HIV-1 infected and HIV-1 uninfected infants.</td>
<td>53</td>
</tr>
<tr>
<td>8. Maternal risk factors associated with HCMV transmission in HIV-1 infected and HIV-1 uninfected infants.</td>
<td>55</td>
</tr>
<tr>
<td>9. Infant’s risk factors associated with HCMV transmission in HIV-1 infected and HIV-1 uninfected infants.</td>
<td>59</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Estimated number of adults and children living with HIV in 2005.</td>
<td>1</td>
</tr>
<tr>
<td>2. Pathways leading to opportunistic versus cofactor relationships between HCMV and HIV.</td>
<td>2</td>
</tr>
<tr>
<td>3. Structure of human cytomegalovirus virion and human cytomegalovirus genome.</td>
<td>6</td>
</tr>
<tr>
<td>4. Amplicon detection by 5’ nuclease oligoprobes.</td>
<td>25</td>
</tr>
<tr>
<td>5. PHPT hospital networks in Thailand.</td>
<td>29</td>
</tr>
<tr>
<td>6. The schematic diagram of the research design in this study.</td>
<td>32</td>
</tr>
<tr>
<td>7. The location of HCMV DNA target for amplification.</td>
<td>37</td>
</tr>
<tr>
<td>8. Screening of successfully transformed bacteria.</td>
<td>46</td>
</tr>
<tr>
<td>9. The confirmation of the presence of HCMV IE gene fragment in purified plasmid DNA after large scale production by conventional PCR.</td>
<td>47</td>
</tr>
<tr>
<td>10. Maternal risk factors associated with HCMV transmission in HIV infected infants.</td>
<td>57</td>
</tr>
<tr>
<td>11. Maternal risk factors associated with HCMV transmission in HIV uninfected infants.</td>
<td>58</td>
</tr>
<tr>
<td>12. Infant’s factors associated with HCMV infection in HIV-1 infected and HIV-1 uninfected infants.</td>
<td>60</td>
</tr>
<tr>
<td>13. Evaluation of survival free of diagnosed HCMV in HIV-1 infected infants and HIV-1 uninfected infants.</td>
<td>61</td>
</tr>
<tr>
<td>14. Accumulated rate of infants died or met criteria for HIV disease progression among HIV-1/HCMV coinfect ed infants and infant with HIV-1 infection alone.</td>
<td>62</td>
</tr>
</tbody>
</table>
15. Kaplan-Meier estimates curve showing the probability of HIV disease progression among HIV-1/HCMV coinfected infants and infants with HIV-1 infection alone.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% CI</td>
<td>95 percent confidence interval</td>
</tr>
<tr>
<td>%</td>
<td>Percent</td>
</tr>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>γ</td>
<td>Gamma</td>
</tr>
<tr>
<td>µ</td>
<td>Micro</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>µL</td>
<td>Microliter</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>A</td>
<td>Adenine</td>
</tr>
<tr>
<td>C</td>
<td>Cytosine</td>
</tr>
<tr>
<td>G</td>
<td>Guanine</td>
</tr>
<tr>
<td>T</td>
<td>Thymine</td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquired immunodeficiency syndrome</td>
</tr>
<tr>
<td>bp</td>
<td>Basepair</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster of differentiation</td>
</tr>
<tr>
<td>CCR-5</td>
<td>Receptor for CC-chemokine</td>
</tr>
<tr>
<td>CXCR-4</td>
<td>Receptor for CXC-chemokine</td>
</tr>
<tr>
<td>DBS</td>
<td>Dried blood spot</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxyribonucleotide triphosphate</td>
</tr>
<tr>
<td>dATP</td>
<td>Deoxyriboadenosine triphosphate</td>
</tr>
<tr>
<td>dCTP</td>
<td>Deoxyribocytosine triphosphate</td>
</tr>
<tr>
<td>dGTP</td>
<td>Deoxyriboguanine triphosphate</td>
</tr>
<tr>
<td>dTTP</td>
<td>Deoxyribothymine triphosphate</td>
</tr>
<tr>
<td>dUTP</td>
<td>Deoxyribouracil triphosphate</td>
</tr>
<tr>
<td>dsDNA</td>
<td>Double stranded deoxyribonucleotide triphosphate</td>
</tr>
</tbody>
</table>
EDTA
Ethylenediaminetetraacetic acid

ELISA
Enzyme liked immunosorbent assay

g
Gram

gB
Glycoprotein B

HCMV
Human cytomegalovirus

HIV-1
Human immunodeficiency virus type-1

IE gene
Immediate-early gene

IgG
Immunoglobulin G

IgM
Immunoglobulin M

IL-1\(\beta\)
Interleukin-1 beta

IL-6
Interleukin-6

IL-8
Interleukin-8

IQR
Interquartile range

Kbp
Kilobasepair

LB medium
Luria-Bertani medium

LTR gene
Long terminal repeated gene

M
Molarity

mg
Milligram

min
Minute

MHC
Major histocompatibility complex

mL
Milliliter

mM
Millimolar

mRNA
Messenger ribonucleic acid

MW
Molecular weight

ng
Nanogram

nm
Nanometer

no.
Number

O.D.
Optical density

p24
Phosphoprotein 24, typical protein of lentiviruses
PBL: Peripheral blood leukocyte
PCR: Polymerase chain reaction
pmol: Picomole
RNA: Ribonucleic acid
rpm: Rounds per minute
RT-PCR: Reverse transcription polymerase chain reaction
TGF-β: Tumors growth factor – beta
TNF-α: Tumors necrosis factor – alpha
UV: Ultraviolet light
vs.: Versus
w/v: Weight by volume
ZDV: Zidovudine