TABLE OF CONTENTS

PAGE	
ACKNOWLEDGEMENTS	
ABSTRACT v	
TABLE OF CONTENTS xi	
LIST OF TABLES xvi	i
LIST OF FIGURES xvi	ii
ABBREVIATIONS AND SYMBOLS xix	I.
CHAPTER I: INTRODUCTION	
1.1 Statement of problems	1
1.2 Literature reviews	5
1.2.1 Hemoglobins	5
1.2.2 The organization of the human α -globin gene cluster	6
1.2.3 Hemoglobin production	7
1.2.4 The classification of thalassemia syndromes	9
1.2.4.1 Beta thalassemia (β-thalassemia)	10
1.2.4.2 Alpha thalassemia (α-thalassemia)	10
1.2.4.2.1 α -thalassemia heterozygote	12
1.2.4.2.1.1 heterozygous α-thalassemia 1 (/αα)	12
1.2.4.2.1.2 heterozygous α -thalassemia 2 (- $\alpha/\alpha\alpha$)	13

xi

1.2.5 Hematological changes in α -thalassemias			
1.2.6 The changing of hemoglobin Bart's levels			
1.2.7 Hemoglobin analysis			
1.2.7.1 Screening techniques			
1.2.7.1.1 Complete blood count (CBC)	18		
1.2.7.1.2 One-tube osmotic fragility test (OF test)	19		
1.2.7.2 Conventional confirmatory test	19		
1.2.7.2.1 Hb H inclusion bodies	20		
1.2.7.3 Instrumental techniques	21		
1.2.7.3.1 Electrophoresis	21		
1.2.7.3.2 High performance liquid chromatography	21		
(HPLC)			
1.2.7.4 Extensive analysis technique	22		
1.2.7.4.1 DNA analysis	22		
1.3 Production of monoclonal antibody			
1.4 Objectives 2			
CHAPTER II: MATERIALS AND METHODS			
2.1 Chemicals and instruments used in this study are shown in	-27		
Appendix A			
2.2 Characterization of monoclonal antibodies against hemoglobins 27			
2.2.1 Hemolysate preparation	27		
2.2.2 Characterization of monoclonal antibodies against	28		
hemoglobins by indirect ELISA			

xii

2.3 Single cell cloning		
2.4 Determination of isotype of monoclonal antibodies	29	
2.5 Large scale production and purification of monoclonal	29	
antibodies		
2.5.1 Production of ascitic fluid	29	
2.5.2 Purification of Thal GJA and Thal N/B monoclonal antibodies	30	
by AKTA [™] prime automated liquid chromatography system		
2.6 Determination of hemoglobin Bart's by sandwich ELISA	30	
2.6.1 Labeling of Thal N/B with horseradish peroxidase (HRP)	30	
2.6.2 Determination of HRP-conjugated Thal N/B anti-hemoglobin	31	
mAb activity		
2.6.3 Optimization of Sandwich ELISA for detection of	31	
hemoglobin Bart's in blood sample hemolysate		
2.6.4 Determination of specificity and sensitivity the developed	32	
sandwich ELISA		
2.7 Determination of hemoglobin Bart's in hemolysate by sandwich ELISA	33	
2.7.1 Blood samples	33	
2.7.2 Identification of α -thalassemia by PCR analysis	33	
2.7.2.1 DNA preparation	34	
2.7.2.2 Detection of α -thalassemia 1 (SEA type) by PCR analysis	35	
2.7.2.3 Detection of α -thalassemia 2 by PCR amplification	37	

2.7.3 Detection of Hb Bart's in blood samples by the developed	40
sandwich ELISA	
2.7.3.1 Blood sample preparation	40
2.7.3.2 Detection Hb Bart's in blood sample by sandwich ELISA	40
CHAPTER III: RESULTS	
3.1 Characterization of monoclonal antibodies against hemoglobins	41
3.2 Determination the activity and specificity of purified monoclonal	43
antibodies against hemoglobins	
3.3 Detection of hemoglobin Bart's in blood samples by Sandwich ELISA	45
3.3.1 Preparation of HRP conjugated mAb Thal N/B	45
3.3.2 Development of method for determination of hemoglobin	47
Bart's by sandwich ELISA using mAbs Thal GJA and	
HRP-labeled Thal N/B	
3.4 Determination of specificity and sensitivity of hemoglobin Bart's	50
of the developed sandwich ELISA	
3.5 Evaluation of the developed sandwich ELISA for quantification of	52
hemoglobin Bart's in thalassemia hemolysate	
3.5.1 Screening for thalassemia heterozygotes	52
3.5.1.1 Blood samples	52
3.5.1.2 One-tube osmotic fragility test (OF test)	52
3.5.1.3 Hb H inclusion body test	53

3.5.1.4 High Performance Liquid Chromatography analysis for	55
β-thalassemia	
3.5.1.5 PCR analysis for α -thalassemia	57
3.5.1.5.1 Detection α -thalassemia 1 with the Southeast	57
Asian deletion (SEA type) by using	
Gap-PCR analysis	
3.5.1.5.2 Detection α -thalassemia 2 with 3.7 kb and	59
4.2 kb deletions by PCR analysis	
3.5.1.6 Comparison of the one-tube osmotic fragility test	62
and PCR test	
3.5.1.7 Quantitation of hemoglobin Bart's by the developed	64
sandwich ELISA	
3.5.1.8 Quantitation of hemoglobin Bart's concentration	69
per gram of hemoglobin	
CHAPTER IV: DISCUSSION AND CONCLUSION	73
REFERENCES	82
APPENDIX	92
APPENDIX CIRRICULUM VITAE	101

xv

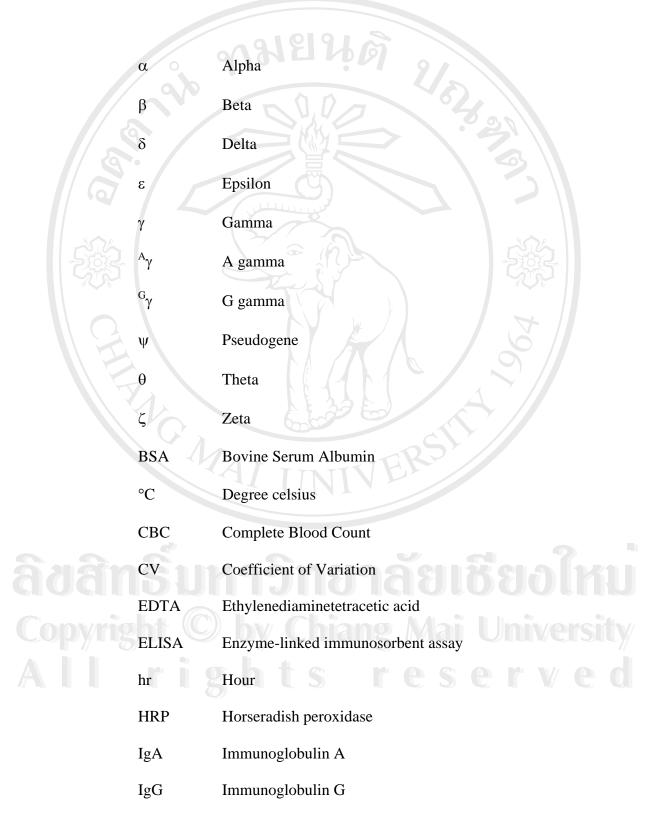
LIST OF TABLES

TABLE		PAGE	
2.1	The reaction mixture of Gap-PCR for detection of α -thalassemia	1	36
	SEA type		
2.2	The PCR cycling condition for α -thalassemia 1 (SEA) using		37
	the Thermal cycler		
2.3	The reaction mixture of PCR amplification for detection of		38
	α -thalassemia 2 with 3.7 and 4.2 kb		
2.4	The reaction mixture of PCR amplification for detection of		39
	internal control		
2.5	The PCR cycling condition for α -thalassemia 2		39
	(3.7 and 4.2 kb deletions) using the Thermal cycler		
3.1	Screening of 91 blood samples by OF Test using 0.36% buffered		63
	saline solution compared with PCR analysis		
3.2	The results of developed sandwich ELISA for Hb Bart's in		66
	different categories		
3.3	The results of developed sandwich ELISA for Hb Bart's per gran	ersi	71
	hemoglobin in different categories		

xvi

LIST OF FIGURES

FIGURE PAGE			
1,1	Hemoglobin molecule	6	
1.2	2 Organization of α -globin gene cluster		
1.3	Sequence of globin chain synthesis in the embryo and fetus	8	
	throughout the first year of life		
51.2	Duplicated XYZ box arrangement containing the α genes	14	
1.5	Misaligned chromosomes crossing over to produce α -thalassemia	15	
1.6	Monoclonal antibodies production	25	
2.1	Demonstration of diagram normal α -globin-like-gene cluster and	36	
	α-thalassemia 1 (SEA)		
2.2	2 Demonstration of 3 pairs of primer amplify PCR product with	38	
	1779, 1529 and 1395		
3.1	Determination of the specificity of Thal GJA and Thal N/B monoc	lonal 42	
	antibodies		
JQ-3.2	Specificity of purified mAbs Thal GJA and Thal N/B by	44	
	gindirect ELISA Chiang Mai Unive		
3.3	Activity of HRP-conjugated purified mAb Thal N/B in the presence	e 46	
	or absence of sodium azide preservative		
3.4	The optimal concentration of Thal GJA and HRP-conjugated	48	
	Thal N/B mAb for detection of Hb Bart's in hemolysate by develop	ped	


xvii

sandwich ELISA

3.5	The optimal concentration of Thal GJA and Thal N/B-HRP to	49
	detect Hb Bart's in hemolysate was determined	
3.6	Specificity and sensitivity of the developed sandwich ELISA	51
3.7	Hb H inclusion bodies screening in α -thalassemia 1 heterozygote	54
	by modified BCB method	
3.8	Three representative types of HPLC chromatograms from blood sample	s 56
3.9	PCR analyses for α -thalassemia 1 Southeast Asian deletion type	58
3.10	PCR analyses for α -thalassemia 2 with 3.7 kb deletions	60
3.11	PCR analyses for α -thalassemia 2 with 4.2 kb deletions	61
3.12	The representative standard curve of purified Hb Bart's concentrations	67
	was determined by developed sandwich ELISA	
3.13	Comparison between PCR analysis and developed sandwich	68
	ELISA to identify α -thalassemia in 91 blood samples	
3.14	Quantitation of Hb Bart's concentration in total hemoglobin	72
	concentration to identify α -thalassemia in 91 blood samples	

xviii

ABBREVIATIONS AND SYMBOLS

IgM	Immunoglobulin M
Igs	Immunoglobulins
IMDM	Iscove's Modified Dulbecco's Medium
kb	Kilobase
kDa	Kilo Dalton
L	Litre
М	Molarity
mAb	Monoclonal antibody
mg	Milligram
min	Minute
ml	Milliliter
mM	Millimolar
nm	Nanometer
OD	Optical Density
PBS	Phosphate Buffer Saline
%	Percent
pH	Power of hydrogen
rpm	Round per minute
μg	Microgram
	Microliter Mai University