TABLE OF CONTENTS

	PAGE	
ACKNOWLEDGEMENTS	iii	
ABSTRACT	iv	
TABLE OF CONTENTS	xii	
LIST OF FIGURES	- xv	
LIST OF TABLES	xvii	
ABBREVATIONS	xviii	
CHAPTER I: INTRODUCTION		
1.1 Statement of problems	01//	
1.2 Literature reviews	3	
Avian immune system	3	
Immunoglobulins in chicken	5	
Immunoglobulin diversity in chickens	7	
Transport of IgY from maternal serum to the offspring	9	
Biochemical properties of IgY	Enlh	
Advantages of IgY in immunodiagnostic aspects	12 KS	
Antibody production in chicken	17	
Isolation of IgY from egg yolk	19	
Applications of IgY	22	
1.3 Objectives	27	

CHAPTER II: MATERIALS AND METHODS

2.1	Purification of immunoglobulins from pooled normal mouse serum	28
2.2	Determination the purity of isolated mouse immunoglobulins	29
	with SDS-PAGE	
2.3	Determination of immunoglobulin isotypes	29
2.4	Immunization	30
2.5	Extraction of IgY from egg yolk by water dilution	31
	and salt precipitation method	
2.6	Determination the purity of chicken IgY by SDS-PAGE	31
2.7	Indirect ELISA for measurement of chicken	32
	anti-mouse immunoglobulins antibodies	
2	.7.1 Titration of concentration of mouse immunoglobulins antigen	32
2	.7.2 Titration of HRP conjugated rabbit anti-chicken IgG	33
2.8	Fluorescein isothiocyanate (FITC) labeling of chicken	33
	anti-mouse immunoglobulins antibodies	
2.9	Determination the activity of FITC labeled chicken anti-mouse	34
	immunoglobulins	
2.10	Titration of FITC labeled chicken anti-mouse immunoglobulins	35
	antibodies for using in indirect immunofluorescence assay.	
2.11	Determination of leukocyte sub-populations by using FITC	35
	conjugated chicken anti-mouse immunoglobulins antibodies	

2.12	2 Determination of recombinant protein expression on COS cells	36
	using FITC conjugated chicken anti-mouse immunoglobulins antibodies	
CHAP'	TER III: RESULTS	
3.1	Preparation of mouse immunoglobulins for immunization	37
3.2	IgY extraction from egg yolk by water dilution and salt	38
	precipitation method	
3.3	Optimization of ELISA conditions for measurement of chicken	42
	anti-mouse Igs in serum and IgY extracted from egg yolk	
3.4	Production of chicken anti-mouse immunoglobulins antibodies	43
3.5	FITC conjugation and determination the activity of FITC	49
	conjugated chicken anti-mouse immunoglobulins antibodies	`
3.6	Titration of FITC conjugated chicken anti-mouse immunoglobulins	49
	for using in indirect immunofluorescence assay	
3.7	Determination of peripheral leukocyte populations by	51
	using the generated conjugate.	
3.8	Determination of protein expression in COS cell transfection system	56
	using generated conjugate	
CHAPT	TER IV: DISCUSSION AND CONCLUSION	
REFER	RENCES	67
APPEN	IDIX	86
CIRRIC	CULUM VITAE	97

LIST OF FIGURES

FIGU	TRE 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	PAGE
1.1	The structural differences between mammalian IgG and chicken IgY	7
3.1	SDS-PAGE analysis of isolated mouse Igs	39
3.2	The absorbance of isolated mouse Ig isotypes determined by	40
	sandwich ELISA	
3.3	SDS-PAGE analysis of IgY extract from egg yolk	41
3.4	Titration of mouse Igs concentration for coating plate	44
	in sandwich ELISA	
3.5	Titration of horseradish peroxidase conjugated	45
	rabbit anti-chicken IgG concentration	
3.6	Anti-mouse Igs response of chicken sera after immunization	47
3.7	Anti-mouse Igs response of chicken IgY extracted from	48
	egg yolk after immunization	
3.8	Comparison of reactivity of FITC conjugated chicken anti-mouse Igs	50 -
3.9	Immunofluorescence analysis of the reactivity of FITC conjugated	52
	chicken anti-mouse Igs antibodies at various concentrations when	
	IgG1 and IgG2b isotypes were used as primary antibodies	
3.10	Immunofluorescence analysis of the reactivity of FITC conjugated	53
	chicken anti-mouse Igs antibodies at various concentrations when	
	IgG2a IgG3 and IgM isotypes were used as primary antibodies	

- 3.11 FACS profile of the determination of T lymphocytes, B lymphocytes,
 monocytes and granulocytes using prepared conjugate and
 commercial conjugate
- 3.12 The reactivity of FITC conjugated chicken anti-mouse Igs antibodies 58 with specific antibody against protein expressed on transfected COS cells

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

TAI	BLE 9 9 31 B 18 9	PAGE
3.1	Comparison of percent T and B lymphocyte sub-populations using	55
	generated conjugate and commercial conjugate	
3.2	The reactivity of FITC conjugated chicken anti-mouse Igs antibodies	57
	with specific antibody against protein expressed on transfected COS cells	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS

α Alpha

β Beta

°C Degree Celsius

γ Gamma

μ Micro

v Upsilon

μg Microgram

μl Microliter

nm Nanometer

Ab Antibody

BSA Bovine serum albumin

DEAE-Dextran Diethylaminoethyl-Dextran

DMSO Dimethyl sulfoxide

ELISA Enzyme linkage immunosorbent assay

FACS Fluorescence-activated cell sorter

FITC Fluorescein isothiocyanate

g Gram

HRP Horseradish peroxidase

H₂SO₄ Sulfuric acid

IgG Immunoglobulin G

IgM Immunoglobulin M

IgY Immunoglobulin Y

Igs Immunoglobulins

kDa Kilodalton

kg Kilogram

M Molarity

MW Molecular weight

N Normality

mAb Monoclonal antibody

mg Miligram

min Minute

ml Milliliter

NaN₃ Sodium azide

Na₂SO₄ Sodium sulfate

OD Optical density

OPD O-phenylenediamine

PBMC Peripheral blood mononuclear cells

PBS Phosphate buffer saline

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis

Sec Second