TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
TABLE OF CONTENTS	x
LIST OF TABLES	xv
LIST OF ILLUSTRATIONS	xvi
ABBREVIATIONS	xviii
CHAPTER I: INTRODUCTION	502
1.1 Statement of problems	
1.2 Literature reviews	2
1.2.1 Introduction to immunology	2
1.2.1.1 Innate immunity	3
1.2.1.1.1 The physical and chemical barriers	3
1.2.1.1.2 Cells involved in body defense	5
1.2.1.1.3 Blood protein complements	7
1.2.1.2 Adaptive immunity	. 8
1.2.1.2.1 Humoral immunity (HMI)	8
1.2.1.2.2 Cell-mediated immunity (CMI)	12
1.2.2 Cell cooperation	15
1.2.2.1 Extracellular signaling molecules in cell cooperation	15
1.2.2.2 T cell activation and signal transduction	Jnive ₁₇
1.2.2.2.1 MHC-TCR complex mediated-T cell activation	17
1.2.2.2.2 CD3-mediated T cell activation	19
1.2.3 Apoptosis	20
1.2.3.1 The receptor-dependent pathway	21
1.2.3.2 The recentor-independent nathway	22.

1.2.4 Leukocyte surface molecules	24
1.2.5 CD147 molecule	25
1.3 Objectives	28
CHAPTER II: MATERIALS AND METHODS	29
2.1 Chemicals, antibodies, cell lines and instruments	29
2.2 Production of ascitic fluids containing anti-CD147 mAbs	29
2.3 Purification of anti-CD147 mAbs from ascitic fluids	29
2.4 Measurement of activity and specificity of	30
the purified anti-CD147 mAbs	
2.4.1 Measurement of activity of the purified mAbs	30
using U937 cell line	
2.4.2 Measurement of the specificity of the purified mAbs	31
by using CD147 expressing COS cells	
2.4.2.1 Preparation of COS cells	31
2.4.2.2 COS cell transfection	31
2.4.2.3 Staining of transfected COS cells by indirect	32
immunofluorescent method	
2.5 Conjugation of purified anti-CD147 mAb with	32
fluorescein isothiocyanate (FITC)	
2.6 Titration of FITC-conjugated anti-CD147 mAbs for epitope mapping	33
2.7 Production of plasmid DNA encoding domain 1 or	33
domain 2 of CD147 molecule	
2.7.1 Transformation of plasmid DNA into E. coli	33
2.7.2 Isolation of plasmid DNA	34
2.7.3 Characterization of isolated plasmid DNA	Ve ₃₅ SITY -
2.7.4 Large-scale production of plasmid DNA	V ³⁵
2.8 Epitope mapping	36
2.8.1 Epitope mapping of anti-CD147 mAbs by cross-blocking	36
analysis using U937 cell line	

2.8.2	Epito	ope mapping of anti-CD147 mAbs using domain 1 or	36
	doma	ain 2 of CD147 expressing COS cells	
2	.8.2.1	COS cell transfection	36
2	.8.2.2	Intracellular staining of transfected COS cells by	37
		indirect immunofluorescent method	
2.9 Char	acteriz	zation of anti-CD147 mAbs by western blotting	37
2.9.1	Prepa	aration of cell lysate	37
2.9.2	Prote	ein separation by sodium dodecyl sulfate	37
	polya	acrylamide gel electrophoresis (SDS-PAGE) and blotting	
2.9.3	Imm	unodetection	38
2.10 Cha	racteri	ization of anti-CD147 mAbs by immunoprecipitation	38
2.10.1	Bio	tinylation and preparation of cell lysate	38
2.10.2	. Pred	clearing lysates	39
2.10.3	Imn	munoprecipitation	39
2.10.4	Che	emiluminescence detection	39
2.11 Fun	ctional	ll study of CD147 molecule	40
2.11.1	Indi	uction of apoptosis by anti-CD147 mAbs	40
2.11.2	. Stud	dy the effect of anti-CD147 mAbs on cell proliferation	40
2.	11.2.1	Titration of anti-CD3 mAb for induction of	40
		T cell proliferation	
	2.11	1.2.1.1 Immobilization of anti-CD3 mAb	40
	2.11	1.2.1.2 Preparation of peripheral blood mononuclear cells	s 41
	2.11	1.2.1.3 T cell proliferation assay	08041MU
2.	11.2.2	Functional study of CD147 molecule involving the	41
		regulation of anti-CD3 mAb induced cell proliferation	University -
	2.11	1.2.2.1 Immobilization of anti-CD3 mAb	$e r V^{41} e d$
	2.11	1.2.2.2 Functional study of CD147 molecule involving	42
		the regulation of anti-CD3 mAb induced cell prol	iferation
	2.11	1.2.2.3 Titration of PHA for induction of	42
		T cell proliferation	w.

2.11.2.2.4 Functional study of CD147 molecule involving	42
the regulation of PHA induced cell proliferation	
CHAPTER III: RESULTS	44
3.1 Production and purification of mAbs to CD147 molecule	44
3.2 Determination of activity and specificity of the	44
purified anti-CD147 mAbs	
3.3 Determination of epitopes recognized by anti-CD147 mAbs	45
3.3.1 Cross-blocking analysis using U937 cells	45
3.3.2 Localization of epitope recognized by anti-CD147 mAbs	51
3.3.2.1 Production of plasmid DNA encoding domain 1	51
or domain 2 of CD147 molecule	
3.3.2.2 Localization of epitope recognized by anti-CD147 mAbs	54
3.4 Characterization of anti-CD147 mAb by western blotting and	58
immunoprecipitation	
3.4.1 Western blotting	58
3.4.2 Immunoprecipitation	61
3.5 Functional study of CD147 molecule involving the induction	65
of apoptosis	
3.6 Functional study of CD147 molecule that involves anti-CD3 mAb	65
induced cell proliferation	
3.6.1 Titration of anti-CD3 mAb for induction of T cell proliferation	65
3.6.2 Functional study of CD147 molecule involving the	70
regulation of anti-CD3 mAb induced cell proliferation	
3.7 Functional study of CD147 molecule involving PHA induced cell	72
proliferation	
CHAPTER IV: DISCUSSION AND CONCLUSION	75
REFERENCES	82
APPENDICES	89
APPENDIX A List of the chemicals and materials used in this study	90
APPENDIX B List of antibodies used in this study	93

APPENDIX C List of cell lines used in this study	94
APPENDIX D List of instruments used in this study	95
APPENDIX E Reagents and buffers preparation	96
CIRRICULUM VITAE 98889	106
141 UNIVERS	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

FABLE		PAGE
1.1	The effector functions of antibody isotypes	10
3.1	F/P ratio of FITC-conjugated anti-CD147 mAbs	48
3.2	Cross-blocking analysis of anti-CD147 mAbs	50
3.3	Summary of epitopes recognized by anti-CD147 mAbs	64
	THE TOTAL UNIVERSITY	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF ILLUSTRATIONS

FIGUR	e valend	PAGE
1.1	T cell signaling leads to activation	18
1.2	Insufficient TCR aggregation results in the generation of a partial signal	20
1.3	Schematic representation of apoptotic stimuli, signaling pathways,	23
	and effector mechanisms	
3.1	The immunofluorescence profiles of activity of purified anti-CD147 mAbs	46
3.2	Reactivity of purified anti-CD147 mAbs with CD147 expressing COS cells	47
3.3	Titration for optimal concentration of FITC-conjugated anti-CD147 mAbs	49
3.4	Characterization of the plasmid DNA encoding domain 1 or domain 2	52
	of CD147 molecule isolated from various bacterial colonies	
3.5	Characterization of the plasmid DNA encoding domain 1 or domain 2	53
	of CD147 molecule isolated from the selected bacterial colonies	
3.6	Reactivity of mAbs M6-2F9 (a), M6-2B1 (b), M6-1F3 (c), M6-1D4 (d),	55
	M6-1B9 (e), M6-1E9(f), and MEM-M6/6 (g) with intact CD147	
	expressing COS cells	
3.7	Reactivity of mAbs M6-2F9 (a), M6-2B1 (b), M6-1D4 (c), M6-1B9 (d)	56
	and M6-1E9 (e) with CD147 domain 1 expressing COS cells	
3.8	Reactivity of mAb MEM-M6/6 with CD147 domain 2 expressing	57
	COS cells (a) and mAb MT8 with CD8 expressing COS cells (b)	
3.9	Analysis of anti-CD147 mAbs by Western blotting	59
	under non-reducing condition	
3.10	Analysis of anti-CD147 mAbs by Western blotting under reducing condition	60
3.11	Immunoprecipitation of cell surface molecule recognized by	62
	anti-CD147 mAbs under reducing condition	

3.12 Immunoprecipitation of cell surface molecule recognized by	63
anti-CD147 mAbs under non-reducing condition	
3.13 The immunofluorescence profiles of anti-CD147 mAbs for apoptotic	66
induction of U937 cell line	
3.14 The immunofluorescence profiles of anti-CD147 mAbs for apoptotic	67
induction of Sup-T1 cell line	
3.15 The immunofluorescence profiles of anti-CD147 mAbs for apoptotic	68
induction of KG1a cell line	
3.16 Titration of immobilized mAb OKT3 concentration for T cells	69
proliferation assay	
3.17 Involvement of CD147 molecule in the regulation of CD3-mediated	71
T cells proliferation	
3.18 Titration of PHA for T cells proliferation assay	773
3.19 Involvement of CD147 molecule in the regulation of PHA-mediated	74
cells proliferation	
AI UNIVERSIT	
AT UNIVE	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATION

% Percent

β Beta

α Alpha

γ Gamma

μ Micro

μCi Microcurie

μg Microgram

μl Microliter

μM Micromolar

2ME 2-mercaptoethanol

ADCC Antibody-dependent cell cytotoxicity

APCs Antigen presenting cells

APS Ammonium persulfate

BCR B cell receptors

BSA Bovine serum albumin

CD Cluster of differentiation

cDNA Complementary deoxyribonucleic acid

cm Centimeter

CMI Cell-mediated immunity

CRP C-reactive protein

CSF Colony-stimulating factors

CTLs Cytotoxic T-lymphocytes

DEAE-Dextran Diethylaminoethyl-Dextran

DMSO Dimethyl sulfoxide

DNA Deoxyribonucleic acid

EDTA Ethylenediaminetetraacetic acid

EMMPRIN Extracellular matrix metalloproteinase inducer

EtBr Ethidium bromide

FACS Fluorescence-activated cell sorter

FCS Fetal calf serum

FITC Fluorescein isothiocyanate

g Gram or gravity

HCl Hydrochloric acid

HMI Humoral-mediated immunity

IFN Interferon

Ig Immunoglobulin

IgA Immunoglobulin A

IgE Immunoglobulin E

IgE Immunoglobulin E

IgG Immunoglobulin G

IgM Immunoglobulin M

Igs Immunoglobulins

IL Interleukin

IMDM Iscove's modified Dulbecco's medium

kDa Kilodalton

LPS Lipopolysaccharides

LT Lymphotoxin

M Molarity

mAb Monoclonal antibody

mAbs Monoclonal antibodies

MALT Mucosa-associated lymphoid tissue

MBL Mannose-binding lectin

MEM Minimum essential medium

mg Milligram

MHC Major histocompatibility complex

MHC-I Major histocompatibility complex class I

MHC-II Major histocompatibility complex class II

min Minute

ml Milliliter

mM Millimolar

mm' Cubic millimeter

MW Molecular weight

N Normality

NaN₃ Sodium azide

ng Nanogram

NK cell Natural Killer cell

nm Nanometer

OD Optical density

°C Degree Celsius

PBMC Peripheral blood mononuclear cells

PBS Phosphate buffered saline

PHA Phytohaemagglutinin

PMSF Phenylmethylsulfonyl fluoride

rpm Revolutions per minute

SALT Skin-associated lymphoid tissue

SDS Sodium dodecyl sulfate

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis

TCRs T cell receptors

T_H1 T-helper type 1

T_H2 T-helper type 2

TNF Tumor necrosis factor