TABLE OF CONTENTS

		Page
A	cknowledgement	iii
Er	nglish Abstract	iv
Tł	hai Abstract	v
Та	able of Content	vi
Li	ist of Tables	xii
Li	ist of Figures	xiv
C	hapter 1 Introduction	705
1.	1 Statement and Significance of the Problem	1
1.	2 General Concept	4
1.	3 Rational and Hypothesis	7
1.4	4 Objectives of Research	9
1.	5 Scope of Research	10
C	hapter 2 Literature review	13
2.	1 Biology of tree species in interaction with their insect pests	13
	2.1.1 Oak tree with Oak processionary moth	15
	2.1.2 Sycamore tree with Sycamore lace bug	17
	2.1.3 Horse chestnut tree with Horse chestnut leafminer	22
2.1	2 Nature and origin of used Neem compound	28
	2.2.1 The Neem tree	28
	2.2.2 The active ingredient	31
	2.2.3 The Neem compound	35
2.	3 Related research	39
	2.3.1 Further Neem applications	39
	2.3.2 Pesticide application methods on trees	40

TABLE OF CONTENTS (Continued)

vii

			Page
Cha	pter 3	Methods and Materials	44
3.1	Place	of research and Parties involved	. 44
3.2	Expe	imental design and Test procedure	46
3.3	Proce	dural method for analysis	55
	3.3.1	Visual tree observation	55
	3.3.2	Method of tree-leaf analysis	55
	3.3.3	Method of Azadirachtin analysis	59
3.4	Statis	tical analysis	60
Cha	pter 4	Results	61
4.1	Resul	ts on Oak	61
	4.1.1	Results from visual observation on Oak trees	62
	4.1.2	Results from visual analysis on Oak leaves	67
	4.1.3	Results from HPLC-MS analysis on Oak	69
4.2	Resul	ts on Sycamore	74
	4.2.1	Results from visual observation on Sycamore trees	75
	4.2.2	Results from visual analysis on Sycamore leaves	75
	4.2.3	Results from HPLC-MS analysis on Sycamore	80
4.3	Resul	ts on Horse Chestnut	81
	4.3.1	Results from visual observation on Horse chestnut trees	82
	4.3.2	Results from visual analysis on Horse chestnut leaves	87
	4.3.3	Results from HPLC-MS analysis on Horse chestnut	103
4.4	Possi	ble repellent and / or phytotoxic effects	105

TABLE OF CONTENTS (Continued)

Cha	pter 5 Discussion	114
5.1	Discussion of used methodology	114
5.2	Principles resulting from research	117
5.3	Hypotheses and initial assumption	- 117
5.4	Results in contrast with used methods and materials	118
5.5	Results in contrast with related research	120
5.6	Possible practical application	122
5.7	Concept suggestions / further research ideas	123
Cha	pter 6 Conclusion	124
Refe	erences	126
Арр	endices	137
Арр	endix A 1 – Data of Oak	138
Арр	endix A 2 – Data of Sycamore	142
Арр	endix A 3 – Data of Horse chestnut	144
Арр	endix B – Weather data	156
Арр	endix C – Description of assessed trees	159
Арр	endix D – General information	160

Curriculum Vitae 162

LIST OF TABLES

Table		Page
2.1	Half-life-time of Azadirachtin A in relation to soil pH and temperature	33
3.1	Dates for application as well as for leaf collection on tree species	46
3.2	Calculated amounts of spray mixture for treated Oak trees	49
3.3	Calculated amounts of spray mixture for treated Sycamore trees	49
3.4	Calculated amounts of spray mixture for treated Horse chestnut trees	50
3.5	Selected tree numbers on different collection days and tree species	53
3.6	Fill in form for analysis on Horse chestnut leaves	56
4.1	OPM occurrence on different observation days	62
4.2	OPM nest volume and relations on different observation days	63
4.3	OPM nest volume per tree and observation day	64
4.4	Corrected correlation coefficient and probability of error of total nest volume per tree to treatment option	66
4.5	Corrected correlation coefficient and probability of error of single nest volume per tree to treatment option	66
4.6	Summery of observed leaf damage on Oak on May 25 th	68
4.7	Azadirachtin A standard for 5mg NeemAzal-T/S	69
4.8	Description of 5mg standard curve with the mass of 703	70
4.9	Co-eluted signals at mass 743,7 of Oak Azadirachtin A analysis	71
4.10	Azadirachtin A detection on Oak tree number 46	71
4.11	Description of analysis on Oak tree number 46 with the mass 703	72
4.12	Azadirachtin A detection on Oak tree number 47	73
4.13	Description of analysis on Oak tree number 47 with the mass 703	73
4.14	Summery of observed leaf damage on Sycamore on May 25 th	77
4.15	Summery of observed leaf damage on Sycamore on June 22 nd	79

LIST OF TABLES (Continued)

Table		Page
4.16	Percentages of A. venata and P. platani on Sycamore	80
4.17	Occurrence of HCL monitored through pheromone delta traps	86
4.18a	Summarized average numbers of leaf mines, mine area and larva head capsule for different collection days of the control trees	87
4.18b	Summarized average numbers of leaf mines, mine area and larva head capsule for different collection days of the treated trees	88
4.19	Overview of total mine area per tree and treatment option	89
4.20	Summarized numbers of leaf mines per tree, collection day and treatment option	90
4.21a	Total mine area and observed larvae forms of control trees	91
4.21b	Total mine area and observed larvae forms of treated trees	91
4.22	Scatterplot of relation of mine area to larva capsule	96
4.23	Parameters of categories of infestation	97
4.24	Distribution of categories of infestation with total and relative numbers	98
4.25a	Infestation categories on different collection days of the control trees	98
4.25b	Infestation categories on different collection days of the treated trees	99
4.26	Ratio of leaf mine area to total leaf area for different collection days	100
4.27	Distribution of leaf mines at different canopy places	101
4.28	Total number of leaf mines per canopy place, treatment option and collection day	102
4.29	Azadirachtin A standard for 10mg NeemAzal-T/S	104
4.30	Description of 10mg standard curve with the mass 703	104

Х

LIST OF FIGURES

Figur	e	Page
1.1	Location map of Oak and Sycamore trees in Stuttgart, Germany	11
1.2	Location map of Horse chestnut trees in Stuttgart, Germany	12
2.1a	Oak tree leaves	14
2.1b	Oak tree buds	14
2.1c	Oak tree seeds	14
2.2a	Single Oak processionary moth (OPM)	15
2.2b	Small group of OPM processing	15
2.2c	Big group of OPM processing	15
2.3a	OPM feeding pattern on Oak leaves	16
2.3b	OPM nest with retreated larvae	16
2.4a, I	o Sycamore tree leaf	17
2.4c	Sycamore tree buds	17
2.5a	Aggregated Sycamore seeds (immature)	18
2.5b	Aggregated Sycamore seeds (mature)	18
2.5c	Dispersed Sycamore seeds with fine hairs	18
2.6a	Pollarded Sycamore tree	19
2.6b	Leaf mine of A. platani on Sycamore leaf	19
2.6c	Leaf vein fungus of A. venata on Sycamore leaf	19
2.7a	General leaf setting of Horse chestnut	22
2.7b	Single leaf shape of Horse chestnut	22
2.8a	Horse chestnut buds	23
2.8b	Horse chestnut seed capsule	23
2.8c	Horse chestnut seeds	23
2.9a, 1	b Horse chestnut leaf miner moth	24
2.10a	First instar leaf mine of HCL	24
2.10b	Older leaf mine of HCL, dark areas indicating excrement deposition	24
2.10c	Final stage leaf mine of HCL with left alone pupa cocoons	24
2.11a	First instar larva of HCL	25
2.11b	Later instar of HCL	25
2.11c	Later instar of HCL	25
2.11d	Fifth and last instar of HCL	25

LIST OF FIGURES (Continued)

Figure		Page
2.11e	Pupal stage of HCL	25
2.12a	Adult Neem tree	28
2.12b	Re-sprout growth of Neem	28
2.12c	Neem tree leaves	28
2.13a	Dispersed fruiting panicle of Neem	29
2.13b	Single Neem fruit	29
2.14	Structural formula of Azadirachtin A	31
2.15	Decrease of Azadirachtin A concentration in tomato fruits and leaves	33
2.16	Parts of the production process of NeemAzal-T/S from seed to product	36
3.1a	Oak trees at their location in "Schwieberdinger Strasse"	43
3.1b	Sycamore trees at their location in "Schwieberdinger Strasse"	43
3.1c	Horse chestnut trees at their location in "Haußmann Strasse"	45
3.2a	Measuring cups for accurate mixture of active compound	48
3.2b	Back-pack sprayer used for compound application	48
3.2c	Impression of compound application	48
3.3	Manual tree pruning scissor	51
3.4a	Climbing style for leaf collection	52
3.4b	Parts of common climbing gear	52
3.5a	Sticky trap with stuck HCL moth	54
3.5b	Delta trap placed in lower tree canopy	54
3.6a	Course of action during HCL analysis	57
3.6b	Used binocular for HCL analysis	57
3.7a	Original leaf glued to a paper-sheet	58
3.7b	Blueprint of original leaf glued to a paper sheet	58
4.1a	Marginal feeding on Oak leaf	67
4.1b	Hole feeding on Oak leaf	67
4.1c	Dead spots on Oak leaf	67
4.1d	Leaf mine on Oak leaf	67
4.2a	A. venata on secondary veins of Sycamore leaf	76
4.2b	A. venata on primary vein of Sycamore leaf	76
4.3a, b	Leaf mine on Sycamore leaf	77

LIST OF FIGURES (Continued)

Figur	e	Page
4.3c	Leaf spots on Sycamore leaf	77
4.4a	Healthy Horse chestnut tree in May	83
4.4b	Horse chestnut leaves in May with little signs of HCL infestation	83
4.5a	Stressed Horse chestnut tree in July	83
4.5b	Severe HCL leaf infestation in July	83
4.6a	Early Horse chestnut leaf fall observed in August	84
4.6b	Leaf mines of I. and II. Generation HCL on same leaf	84
4.7	Different cases and stages of leaf roll.	84
4.8	Different cases of leaf wilting, supposably caused be G. aesculi	85
4.9	Different cases of leaf-edge wilting, supposably	
	caused by de-icing salt	85
4.10a	Pathogenic fungi on HCL pupa	94
4.10b	Parasitic spider mites feeding on HCL pupa	94
4.11a	Parasitic insect larvae and nymph on HCL larva	94
4.11b	Parasitic larvae and nymph on HCL pupa	94
4.12a	Insect larvae on Horse chestnut leaf	95
4.12b	Parasitic thrips on HCL leaf mine	95
4.13	Sycamore leaf effected by spray mist of NeemAzal-T/S on May 17 th	
	and on June 27 th	107
4.14	Sycamore leaf effected by spray mist of NeemAzal-T/S on July 12 th ,	
	on August 1 st and August 24 th	107
4.15a	Accumulated spray mixture on leaf edges of A. campestre	
	on June 27 th	108
4.15b	Leaf edge wilting caused by spray mixture on August 1 st	108
4.15c	Wilting effects observed on seed husks on August 1 st	108
4.16a	Horse chestnut leaves damaged by spray mist of active	
	compound applied to the tree trunk	108
4.16b	Decay of Horse chestnut leaf after contact with NeemAzal-T/S	108
4.17	Sequence of leaf decay on tree 65	109
4.18	Sequence of leaf wilting on Horse chestnut tree 65	109

LIST OF FIGURES (Continued)

Figure

4.19	Sequence of leaf decay on Horse chestnut tree 68	9 9 110
4.20	Sequence of damage on leaves of Horse chestnut tree 70	110
4.21a,	b Damage of NeemAzal-T/S on <i>H. helix</i> at June 27 th	
4.21c,	d Damage of NeemAzal-T/S on <i>H. helix</i> at July 26 th	111
4.21e,	f Damage of NeemAzal-T/S on <i>H. helix</i> at August 24 th	112

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved