TABLE OF CONTENTS	
	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (English)	v
ABSTRACT (Thai)	ix
TABLE OF CONTENTS	xiii
LIST OF TABLES	xvi
LIST OF ILLUSTRATIONS	xvii
ABBREVIATIONS	xxii
INTRODUCTION	01
LITERATURE REVIEW	6
Soil CO ₂ efflux	6
Separation of soil CO ₂ efflux	8
Factors influencing soil CO ₂ efflux	9
The influence of rainfall on soil CO ₂ efflux	13
Carbon efflux measurement techniques	15
Net Ecosystem Exchange	18
Factors controlling net ecosystem exchange	22
The influence of rainfall events on ecosystem exchanges	24
Eddy-covariance technique	26
Theory of eddy-covariance technique	27

Signal processing used with eddy-covariance technique	31
Experiment 1: Response of soil CO ₂ efflux and net ecosystem exchange to	36
rainfall variability in wheat field	
Sub-experiment 1: Short-term response of total soil CO ₂ efflux	37
and heterotrophic respiration to rainfall in a winter wheat field	
Introduction	37
Materials and Methods	40
Results	46
Discussion	64
Sub-experiment 2: Net ecosystem exchange in a winter wheat field	73
in relation to biophysical properties and rainfall	
Introduction	73
Materials and Methods	75
Results	82
Discussion	96
Experiment 2: Response of soil CO ₂ efflux and net ecosystem exchange to	101
rainfall variability in peanut field	
Sub-experiment 1: Mechanism and environmental control of	102
soil CO ₂ efflux following rainfall events in summer peanut field	
Introduction	102
Materials and Methods	104
Results Chiang Mai Uni	107 S IU
Discussion	119

Sub-experiment 2: Seasonal variation of carbon dioxide exchan
in summer peanut
Introduction
Materials and Methods
Results
Discussion
SUMMARY AND CONCLUSIONS
REFERENCES
APPENDIX

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

TABLES

Table

2.1

Page

Parameters of the exponential decay model of Equation 7 56 in wheat field. Abbreviations: b₀ is soil CO₂ efflux on the day when rainfall stops (μ mol m⁻²s⁻¹); b₁ is a coefficient that determines the maximal enchantment of soil CO₂ efflux after rainfall; τ is a coefficient that indicates the dynamic time constant (day); and Decrease/Increase(%) is decrease/increase in soil CO2 efflux due to rainfall event. Models of soil respiration from the untrenched and trenched 62 plots (F, μ mol m⁻² s⁻¹) against soil temperature (T, °C) at 0.08 m depth and volumetric soil water content (θ , m³ m⁻³) at 0.04-0.08 m depth.* Nonlinear regression results of ecosystem respiration models 93 Parameters of the exponential decay model of Equation 2 115 in wheat field. Abbreviations: b₀ is soil CO₂ efflux on the day when rainfall stops (μ mol m⁻²s⁻¹); b₁ is a coefficient that determines the maximal enchantment of soil CO₂ efflux after rainfall and τ is a coefficient that indicates the dynamic time constant (day).

2.3

3.1

xvii

LIST OF ILLUSTRATIONS

Figure

1.1

1.2

2.1

2.2

2.3

Page

Major carbon pools and fluxes of the global carbon balance	19
(Source: © Climate Change 2007: The Physical Scientific Basis,	
Intergovernmental Panel on Climate Change.)	
Fluxes contributing to the net ecosystem exchange (NEE).	21
The solid-state infrared gas analyzers (GMP343) set up at	43
the center of trenched plot (Left) and in the soil beneath a	
wheat canopy in the untrenched plot (Right)	
Daily variation in soil CO_2 efflux (a) in relation to soil	47
temperature (b) ,volumetric soil water content (c) and rainfall	
in the untrenched and trenched plots.	
Effect of a natural 7.8-mm rainfall event on soil CO ₂ efflux,	50
soil CO ₂ concentration at 0.04 and 0.08 m depths [CO ₂], soil	
water content at 0-0.04 m and 0.04-0.08 m depths(θ),	
soil temperature at 0.04 and 0.08 m depths (T), and	
CO ₂ diffusivity in the untrenched (a) and trenched plots (b).	
Arrow indicate rainfall event.	
Relationships between soil CO_2 efflux and soil temperature (a)	52
and soil water content (b) after rainfall event in the untrenched plo	ot.
Relationships between soil CO ₂ efflux and soil temperature (a)	53

2.4

and soil water content (b) before rainfall event in the trenched plot.
Total soil CO₂ efflux and heterotrophic respiration before, and
9-days period following a 7.8 mm rainfall event on DOY 90.
Shown are mean and standard errors for 24 hr period. The day -1
represents 24 hr before the rainfall and the day 1 represents 24 hr
after rainfall.

xviii

Soil volumetric water content (θ) at 0-0.04 m depth (FC, field 55 capacity) and soil temperature (T) at 0.04 m depth in the untrenched (total soil CO₂ efflux) and trenched plots (heterotrophic respiration) on DOY 90. The day -1 represents 24 hr before the rainfall and the day 1 represents 24 hr after rainfall.

The relationship between daily mean soil CO_2 efflux and soil 59 temperature at 0.08 m depth in the untrenched plot. Lines show fit to Equation 3 for each soil water content range.

59

63

The relationship between daily mean soil CO₂ efflux and soil temperature at 0.08 m depth in the trenched plot. Lines show fit to Equation 3 for each period.

2.10 The relationship between daily mean soil CO₂ efflux and soil 60 water content at 0.04-0.08 m at the untrenched (a), trenched plots (b). Lines show fit to Equation 5.

Comparison of measured and modeled soil CO_2 efflux in the untrenched and trenched plots: function of soil water content, $F(\theta)$ in the untrenched plot (a) and function of soil temperature, F(T)and function of soil temperature and soil water content $F(T,\theta)$

2.9

		in the trenched plot (b,c). The lines are $y = a + bx$.	
2.1	2	The nighttime net ecosystem exchange (NEE) versus the friction	78
		velocity in wheat field.	
2.1	3	Energy balance closure at half-hourly scale in winter wheat	80
		growth period. Eddy covariance energy fluxes (LE+H) against	
		available energy (Rn-G-S).	
2.1	4	Daily mean air temperature, soil temperature and soil water	83
		content in the upper soil layer with rainfall during wheat	
		growing seasons in 2007.	
2.1	5	Seasonal distributions of green leaf area index (GLAI) and	84
		aboveground biomass of the winter wheat.	
2.1	6	Diurnal variations of 14-day average net ecosystem exchange	85
		of CO_2 (NEE) in winter wheat field. Positive sign indicates	
		carbon source while negative sign indicates carbon sink.	
2.1	7	Example of light-response curves of daytime NEE at different	86
		growth stages of wheat growing season. Fitted curves are	
		rectangular hyperbolic as described in Equation 1.	
2.1	8	Diurnal variations of NEE, solar radiation, soil temperature	88
		and volumetric soil water content on days before 50.8mm-rainfall	
		event (DOY 103) and on day after rainfall (DOY 106). The	
		relationship between PAR and NEE during morning (6:00 – 12:00))
		and afternoon (12:30 – 18:30) periods.	
2.1	9	The responses of daily gross primary production (GPP) to	91
		soil temperature (a) and soil water content (b).	

2.20	Relationship between gross primary production (GPP)	92
	and aboveground biomass. Weekly averages of half-hours	
	are plotted.	
2.21	Relationship between gross primary production (GPP)	92
	and leaf area index (LAI). Weekly averages of half-hours	
	are plotted.	
2.22	Response of half-hourly ecosystem respiration to changes in	93
	canopy air temperature.	
2.23	Response of half-hourly ecosystem respiration to changes in	94
	air temperature for difference periods in the growing season.	
2.24	Response of half-hourly ecosystem respiration to changes in	94
	soil water content.	
2.25	Average soil respiration measured using soil gradient	95
	measurement and daily average ecosystem respiration	
	prior to and following a rainfall event.	
3.1	Soil automate chamber and control unit box for	105
	soil CO ₂ efflux measurement on the peanut field.	
3.2	The seasonal pattern of soil CO ₂ efflux, and rainfall (a),	108
	and soil temperature at 0.05 m depth and volumetric	
	soil water content at 0.02-0.05 m depth in peanut field.	
3.3	Examples of soil CO ₂ efflux response to rain event	110
	in wheat field. Shown are mean and standard errors for	
	24 hr period. The day -1 represents 24 hr before the	
	rainfall and the day 1 represents 24 hr after rainfall.	

XX

3.4	Total soil CO ₂ efflux before, and 7-days period	111
	following rainfall events on DOY 163, DOY 196,	
	and DOY 210. Shown are mean and standard errors	
	for 24 hr period. The day -1 represents 24 hr before the	
	rainfall and the day 1 represents 24 hr after rainfall.	
3.5	Soil volumetric water content 0.02-0.05 m depth	111
	(FC, field capacity; WP, wilting point) and soil temperature	
	at 0.05 m depth on DOY 163, DOY 196, and DOY 210.	
	Shown are mean and standard errors for 24 hr period.	
3.6	The relationship between the flux reduction and the	113
	soil water content before rainfall (a); and pre-rain soil CO_2 efflux ((b).
3.7	The relationship between time constant (τ) of soil CO ₂ efflux and	116
	amount of rainfall.	
3.8	The relationship between daily mean soil CO ₂ efflux and	118
	soil water content at peanut field (c). Lines show fit to Equation 3.	
3.9	The nighttime net ecosystem exchange (NEE) versus the friction	130
	velocity in peanut.	
3.10	Energy balance closure at half-hourly scale in summer peanut	131
	growth period. Eddy covariance energy fluxes (LE+H)	
	against available energy (Rn–G-S).	
3.11	Daily mean air temperature, soil temperature and soil water	134
	content in the upper soil layer with rainfall and irrigation during	
	peanut growing season in 2007.	

3.12	Example of diurnal variation in half-hourly mean net ecosystem	135
	exchange (NEE) in peanut field.	
3.13	Example of light-response curves of daytime NEE at different	137
	growth stages of peanut.	
3.14	Response of daytime NEE to change in air temperature (a),	138
	soil water content at 0.02 m depth (b) and soil temperature (c).	
3.15	Seasonal variation of weekly-GPP in relation to leaf area index	139
	(LAI) (a) and the relationship between soil water content at	
	0.02 m depth and amount of rainfall.	
3.16	The relationship between weekly-GPP and soil water content at	140
	0.02 m depth (a) and amount of rainfall (b).	
3.17	Seasonal variation of weekly-nighttime NEE in relation to leaf	142
	area index (LAI) (a) and the relationship between weekly-nighttim	ne
	and LAI (b).	
3.18	The relationship between weekly-nighttime NEE and soil water	143
	content at 0.02 m depth (a) and amount of rainfall (b).	
3.19	The linear relation between weekly gross primary production	144
	(GPP) and nighttime NEE or ecosystem respiration.	

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

xxiii

ABBREVIATIONS

c	the carbon dioxide mixing ratio
С	Carbon
CO ₂	Carbon dioxide
[CO2]	Carbon dioxide concentrations
DOY	Day of year
EC	Eddy covariance
GtC	Gigatonnes carbon
GPP	Gross primary productivity
IRGA	Infrared gas analyzer
K	Kelvin
LAI	Leaf area index
NEE	Net ecosystem exchange
PAR	Photosynthetically active radiation
Q ₁₀	The increase in reaction rate per 10 °C increases in temperature
Re	Ecosystem respiration
u*	Friction velocity
VPD	vapour pressure deficit
ight ^C	Vertical velocity chiang Mai University