TABLE OF CONTENT

	Page
Acknowledgement	iii
Abstract (English)	iv
Abstract (Thai)	ix
List of Tables	xvi
List of Figures	xxii
Chapter 1 Introduction	1
Chapter 2 Literature review	5
2.1 Distribution and causes of acid soil	5
2.2 Nutrient disorders in acid soil	8
2.3 Acid soil constraints for legume growth and nitrogen fixation	12
2.4 Role and benefit of Arbuscular mycorrhiza fungi (AMF) in	20
legumes	
2.5 Management of soil acidity for legume crop	23
2.5.1 Liming	23
2.5.2 Fertilizer application	24
2.5.3 Use acid tolerant legume cultivars and rhizobium strains	25
2.5.4 Mycorrhizal symbiosis	26

Chapter 3 Arbuscular mycorrhizal status of legumes in a shifting	30
cultivation system in northern Thailand	
3.1 Introduction	30
3.2 Materials and methods	31
3.3 Result	35
3.4 Discussion	42
Chapter 4 Evaluating system for testing effect of arbuscular mycorrhizal	44
fungi on legume growth in acid soil	
4.1 Introduction	44
4.2 Materials and methods	45
4.3 Result	49
4.4 Discussion	62
Chapter 5 Effects of abuscular mycorrhozal fungi, soil acidity and	65
phosphorus on cowpea	
5.1 Introduction	65
5.2 Material and method	65
5.3 Result	68
5.4 Discussion	78

Chapter 6 Comparing effectiveness of different arbuscular mycorrhizal	81	
fungi (AMF) isolates to alleviate acid soil stress in cowpea		
6.1 Introduction	81	
6.2 Material and method	82	
6.3 Result	86	
6.4 Discussion	98	
Chapter 7 Effectiveness of AMF in different types of inoculum on cowpea		
growing in acid soil		
7.1 Introduction	102	
7.2 Material and method	103	
7.3 Result	108	
7.4 Discussion	130	
Chapter 8 General Discussion		
Reference	137	
Curriculum vitae	153	

LIST OF TABLES

Table		Page
3.1	Correlation coefficient between root colonization, soil pH and soil P	36
	and spore density in root zone soil	
3.2	Distribution of AMF spore in the soil profile at 3 locations in Kayo	37
	field in Haui Teecha	
3.3	Soil pH, soil P concentration and spore density in soil of 6 farmer's	38
	field	
3.4	Correlation coefficient between root colonization, P concentration in	42
	YFEL, Soil P and soil pH	
4.1	Effect of soil pH on mycorrhiza root colonization in cowpea at 25	50
	days after sowing	
4.2	Effect of soil pH and arbuscular mycorrhizal fungi inoculation on	50
	shoot dry weight of cowpea at 25 days after emergence	
4.3	Effect of soil pH and mycorrhiza inoculation on root dry weight of	51
	cowpea at 25 days after emergence	
4.4	Effect of soil pH and mycorrhiza inoculation on total dry weight of	51
	cowpea at 25 days after sowing	
4.5	Effect of soil pH and mycorrhiza inoculation on nodule dry weight of	52
	cowpea at 25 days after emergence	
4.6	Effect of soil pH and mycorrhiza inoculation on nodule number/pot of	52
	cowpea at 25 days after emergence	

4.7	Effect of AMF and soil acidity on root colonization, shoot, root,	54
	nodule and total weight and nodule number of cowpea applied with N	
	fertilizer or inoculated with rhizobium	
4.8	Effect of AMF and soil acidity shoot P and N concentration, total P	55
	and N content of cowpea applied with N fertilizer or inoculated with	
	rhizobium	
4.9	Soil P concentration (mg P/kg) in varying P application rate of acid	58
	(pH 5) and non-acid soil (pH6.7)	
4.10	Effect of P application treatment on biomass yield and nodulation of	59
	cowpea in acid (pH 5) and nonacid (pH6.7) soil	
4.11	Effect of P application treatment on shoot P and N concentration, total	60
	N and P content and P uptake efficiency of cowpea in acid (pH 5) and	
	nonacid (pH6.7) soil	
5.1	Root colonization in acid and non-acid soil varied with 3 different P	68
	levels	
5.2	Effect of AMF and P application on cowpea shoot dry weight in acid	69
	and non-acid soil	
5.3	Effect of AMF and P application on cowpea root dry weight in acid	70
	and non-acid soil	
5.4	Effect of AMF and P application on cowpea total dry weight in acid	71
	and non-acid soil	

5.5	Effect of AMF and P application on cowpea nodule dry weight in acid	72
	and non-acid soil	
5.6	Effect of AMF and P application on shoot P concentration in acid and	73
	non-acid soil	
5.7	Effect of AMF and P application on total P content of cowpea in acid	74
	and non-acid soil	
5.8	Effect of AMF and P application on P uptake per unit root weight in	75
	acid and non-acid soil	
5.9	of AMF and P application on shoot N concentration in acid and non-	75
	acid soil	
5.10	Effect of AMF and P application on total N content in acid and non-	76
	acid soil	
6.1	Root colonization shoot root and total dry weight of cowpea	86
	inoculated with soil inoculum containing different AMF isolates in	
	acid and non acid soil	
6.2	Nodule number nodule dry weight shoot P concentration and total P	87
	content of cowpea inoculated with soil inoculum containing different	
	AMF isolates in acid and non acid soil	
6.3	Effect of soil acidity on root colonization of cowpea inoculated with	88
	spores of different AMF isolates in acid and non acid soil with 3 P	
	levels	

xviii

6.4	Shoot dry weight of cowpea inoculated with spores of different AMF	90
	isolates in acid and non acid soil with 3 P levels	
6.5	Root dry weight of cowpea inoculated with spores of different AMF	91
	isolates in acid and non acid soil with 3 P levels	
6.6	Total dry weight of cowpea inoculated with spores of different AMF	92
	isolates in acid and non acid soil with 3 P levels with 3 P levels	
6.7	Nodule dry weight of cowpea inoculated with spores of different	93
	AMF isolates in acid and non acid soil with 3 P levels with 3 P levels	
6.8	Root colonization of mimosa inoculated with spores of different AMF	94
	isolates in acid and non-acid soil at 91 days after sowing	
6.9	Shoot dry weight of mimosa inoculated with different AMF species in	95
	acid and non-acid soil at 13 weeks after sowing	
7.1	Root colonization shoot root and total dry weight of cowpea	108
	inoculated with different inoculun types varied spore rate at 15 days	
	after emergence	
7.2	Nodule number, shoot P concentration and P uptake per unit root	110
	weight of cowpea inoculated with different inoculum types varied	
	spore rate at 15 days after emergence	
7.3	Root colonization, shoot root, and total dry weight of cowpea	112
	inoculated with different inoculum types with varied spore rate at 35	
	days after emergence	

xix

7.4	Nodule number, nodule dry weight, shoot P concentration and P	114
	uptake per unit root weight of cowpea inoculated with different	
	inoculum types with varied spore rate at 35 days after emergence	
7.5	Root colonization, shoot root and total dry weight of cowpea	116
	inoculated with different inoculum types with varied spore rate at 46	
	days after emergence	
7.6	Nodule number, nodule dry weight, shoot P concentration and P	118
	uptake per unit root weight of cowpea inoculated with different	
	inoculum type with varied spore rate at 46 days after emergence	
7.7	Root colonization, shoot dry weight and root fresh weight of mimosa	120
	inoculated with AMF spores sterilized with different antiseptic at 14,	
	25 and 35 days	
7.8	Root colonization, shoot root and total dry weight and nodule number	122
	per plant of cowpea and mimosa inoculated with different inoculum	
	types at 39 days after sowing	
7.9	Nodule dry weight, shoot P concentration, total P content and P	124
	uptake per unit root weight of cowpea and mimosa inoculated with	
	different inoculum types at 39 days after emergence	
7.10	Root colonization, biomass yield, nodulation, shoot P concentration	126
	and total P content of cowpea and mimosa inoculated with different	

AMF inoculums at 59 days after sowing

XX

7.11 Nodule dry weight, shoot P concentration, total P content and P 128
uptake perunit root weight of cowpea inoculated with different
inoculum types at 59 days after emergence

LIST OF FIGURES

Figure		Page
2.1	Distribution of acid soil in the world, with percentage of total land	5
	area with acidic soil in each continent	
3.1	Method of soil sample collection	33
3.2	Abuscular mycorrhiza fungi colonization in roots of 3 legumes in 4	35
	farmer's fields at Huai Teecha	
3.3	Arbuscular mycorrhiza fungi root colonization in 4 cowpea lines in	39
	3 farmer fields	
3.4	Phosphorus concentration in youngest full expended leaf (YFEL) of	40
	4 cowpea lines in 3 farmer's fields	
3.5	Spore density in root zone soil of 4 cowpea lines in 3 farmer fields	41
4.1	Correlation between shoot P concentration and shoot dry weight in	61
	acid and non-acid soil	
4.2	Correlation between shoot N concentration and shoot dry weight in	61
	acid and non-acid soil	
5.1	Correlation between shoot P concentration and shoot dry weight	77
6.1	Spores of 2 different arbuscular mycorrhizal fungi isolated	80
6.2	Growth of mimosa inoculated with different AMF in acid and non-	96
	acid soil	
6.3	The different of inoculation method in chapter 6 and chapter 5	100