
บทที่ 2

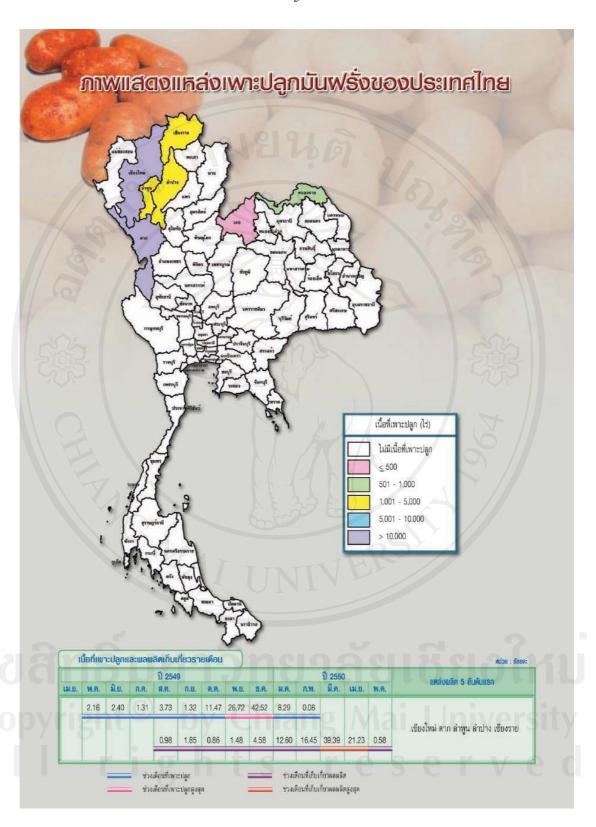
ตรวจเอกสาร

2.1 ลักษณะทางพฤกษศาสตร์ของมันฝรั่ง

มันฝรั่ง เป็นพืชล้มลุกที่ลงหัว กิ่งก้านมันฝรั่งมีลักษณะกลมหรือสามแหลี่ยม ส่วนลำต้นที่ อยู่ใกล้ดินเป็นทรงกลมแต่ไม่กลวง การออกดอกขึ้นอยู่กับพันธุ์ และสภาพดินฟ้าอากาศ ในแหล่งที่ ปลูกเมื่อออกแล้วไม่จำเป็นต้องมีผลหรือเมล็ดเสมอไป (บัณฑูรย์ และนาตยา, 2546)

หัวแบบมันฝรั่ง (tuber)

ภาพ 2.1 ลักษณะต้นและหัวมันฝรั่ง (กรมอุทยานแห่งชาติสัตว์ป่าและพรรณพืช, 2552)


2.1.1 การปลูกมันฝรั่งในประเทศไทย

มันฝรั่งเป็นพืชเศรษฐกิจที่สำคัญในภาคเหนือให้ผลตอบแทนสูงเมื่อเปรียบเทียบกับพืช
อื่นๆ แหล่งปลูกที่สำคัญอยู่ในจังหวัดเชียงใหม่และตาก ซึ่งมีผลผลิตรวมกันประมาณร้อยละ 90
ของผลผลิตทั้งหมดนอกจากนี้ ยังมีการผลิตมันฝรั่งในจังหวัดลำพูน เชียงราย สกลนคร และเลย
(ภาพ 2.2) การปลูกมันฝรั่งในประเทศไทยมี 2 ประเภทคือ มันฝรั่งสำหรับบริโภคสด และมันฝรั่ง แปรรูปส่งโรงงาน

การปลูกมันฝรั่งในประเทศไทยแบ่งเป็น 2 ช่วง ดังนี้ ช่วงฤดูหนาว เป็นฤดูปลูกมันฝรั่ง ตามปกติ ปลูกในช่วงเดือนตุลาคมถึงเดือนพฤศจิกายน เก็บเกี่ยวในเดือนกุมภาพันธ์ถึงเดือนมีนาคม ฤดูนี้เกษตรกรส่วนใหญ่จะใช้หัวพันธุ์จากต่างประเทศ พื้นที่ปลูกส่วนใหญ่เป็นที่ลุ่มบางแห่งปลูกใน นาข้าวหลังจากเก็บเกี่ยวข้าวนาปีเสร็จแล้ว ช่วงฤดูฝน เป็นการปลูกนอกฤดูบนที่ราบบนเขาใน อำเภอฝางและเชียงดาว จังหวัดเชียงใหม่บริเวณที่ปลูกมีอุณหภูมิต่ำ ซึ่งเหมาะกับการเจริญเติบโต ต ของนฝรั่ง การปลูกในฤดูฝนบนเขาสามารถปลูกได้ 2 รุ่นคือ รุ่นแรกปลูกในเดือนมีนาคมถึงเดือน เมษายน และเก็บเกี่ยวประมาณเดือนกรกฎาคมถึงเดือนสิงหาคม รุ่นสองปลูกในเดือนกรกฎาคมถึง เดือนสิงหาคม และเก็บเกี่ยวประมาณเดือนตุลาคมถึงเดือนพฤศจิกายน (ศูนย์วิจัยกสิกรไทย, 2551) พันธุ์มันฝรั่งที่มีการปลูกมากในปัจจุบันมี 3 พันธุ์คือ พันธุ์สปุนต้า (Spunta) เป็นพันธุ์ สำหรับบริโภคสด พันธุ์เคนนีเบค (Kennebec) เป็นพันธุ์สำหรับทำมันทอดแผ่นบาง (Potato Chip) พันธุ์แอตแลนติล (Atlantic) เป็นพันธุ์สำหรับการแปรรูปเช่นเดียวกับพันธุ์เคนนีเบค (ศูนย์วิจัยกสิกร ไทย, 2551)

ปัจจุบันคนไทยนิยมบริโภคอาหาร แบบตะวันตกเพิ่มมากขึ้นทั้งอาหารประเภทเร่งค่วน และอาหารว่างประเภทขบเคี้ยว ดังนั้นมันฝรั่งซึ่งเป็นวัตถุดิบหลักในการผลิตอาหารดังกล่าว เพิ่ม ปริมาณความต้องการบริโภคขึ้นอย่างรวดเร็วในสังคมไทย (ตาราง 2.2) โดยเฉพาะอย่างยิ่ง โรงงาน อุตสาหกรรมการแปรรูปมันฝรั่งทอดแผ่นบางได้ขยายตัวอย่างรวดเร็ว และมีความต้องการมันฝรั่ง เพื่อเป็นวัตถุดิบประมาณปีละ 124,100 ตัน (ศูนย์วิจัยกสิกรไทย, 2551)

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ภาพ 2.2 แหล่งเพาะปลูกมันฝรั่งของประเทศไทย

ที่มา : ศูนย์วิจัยกสิกรไทย (2551)

ตาราง 2.1 การผลิตมันฝรั่งในประเทศไทย

รายการ	2548	2549	2550
1. จำนวนครัวเรือน (ครัวเรือน)	11,412	11,988	14,192
2. เนื้อที่เพาะปลูก (ไร่)	47,494	48,982	50,601
- พันธุ์บริโภค	4,427	4,471	4,638
- พันธุ์โรงงาน	43,067	44,511	45,963
3. ผลผลิต (ตัน)	113,881	118,569	125,703
- พันธุ์บริโภค	11,759	10,618	12,479
- พันธุ์โรงงาน	102,122	107,951	113,224
4. ผลผลิตต่อไร (กก.)	2,398	2,421	2,484
- พันธุ์บริโภค	2,656	2,375	2,691
- พันธุ์โรงงาน	2,371	2,425	2,463

ที่มา : ศูนย์วิจัยกสิกรไทย (2551)

ตาราง 2.2 การส่งออกมันฝรั่งในประเทศไทย

รายการ	2548	2549	2550	
1. การค้าของโลก (ล้านตัน)	9.10	9.49	10.40	
2. ส่วนแบ่งตลาด โลก (%)	0.02	0.01	0.06	
3. ใช้ในประเทศ (ตัน)	181,465	183,616	178,544	
4. นำเข้า				
ปริมาณ (ตัน)	69,497	65,603	58,389	
มูลค่า (ล้านบาท)	1,653	1,437	1,636	
ร. ส่งออก				
ปริมาณ (ตัน)	1,913	555	3,548	
มูลค่า (ล้านบาท)	51.24	49.67	99.04	
6. ราคาส่งออก (บาท/กก.)	26.78	89.41	27.91	
7. คู่ค้าที่สำคัญ	ญี่ปุ่น สิงคโปร ใต้หวัน เกาหลี			
8. คู่แข่งที่สำคัญ	จิน			

ที่มา : ศูนย์วิจัยกสิกรไทย (2551)

2.1.2 สารพิษในมันฝรั่ง

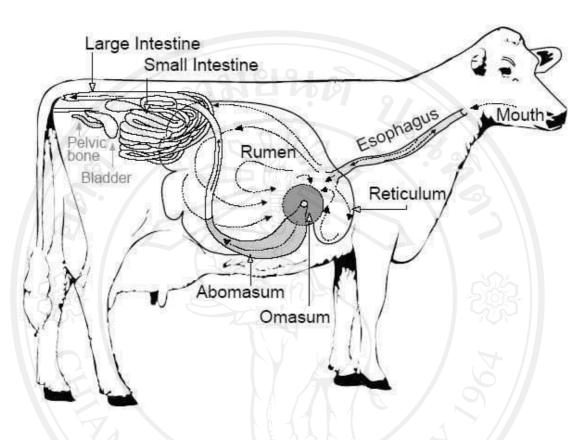
สารพิษที่พบในมันฝรั่งจะอยู่ในกลุ่มของ ไกลโคอัลคาลอยค์ ส่วนใหญ่จะพบในส่วนที่เป็น สีเขียว และตาที่กำลังงอกของมันฝรั่ง ถ้าได้รับสะสมในปริมาณมากในร่างกายจะทำให้เป็นพิษต่อ เนื้อเยื่อเซลล์ประสาท (Lachman et al., 2001)

2.1.3 การใช้เศษมันฝรั่งเป็นอาหารสัตว์เกี้ยวเอื้อง

Chris et al. (1985) ได้ทำการศึกษาโดยการนำเสษมันฝรั่งเหลวนำมาผสมเป็นอาหารผสม กรบสูตรให้โครีคนมกิน โดยใช้ในอัตราส่วน 0, 10, 15 และ 20% พบว่าปริมาณผลผลิตของน้ำนม องค์ประกอบของน้ำนม ระยะการให้นม และปริมาณอาหารที่กินไม่แตกต่างกัน (P>0.05) ในโคที่ ได้รับการนำเสษมันฝรั่งที่เหลวนำมาผสม 20% พบว่ามีปริมาณไขมันนมลดลง มีผล มาจากเกิดการ ลดลงของกรดไขมันระเหยได้ และผลกระทบจากอัตราส่วนของ acetate ต่อ propionate ในส่วนของ ค่าการย่อยได้ และการใช้ประโยชน์ได้ของในโตรเจน เสษมันฝรั่งที่เหลวไม่มีผลต่อการย่อยได้ของโปรตีนและวัตถุแห้ง แต่ในระดับที่เสริมเสษมันฝรั่งที่เหลว 20% ทำให้ค่าการย่อยได้ของเยื่อใย ลดลง ปริมาณแอมโมเนียในกระเพาะรูเมน ปริมาณของ acetate อัตราส่วนของ acetate ต่อ propionate และปริมาณของกรดไขมันระเหยได้ทั้งหมด อยู่ในระดับต่ำ และมี pH ที่สูงขึ้น

Dickey et al. (1970) ได้ทำการศึกษาโดยการใช้เศษมันฝรั่งผงเปรียบเทียบกับเศษมันฝรั่ง เหลวแล้วนำมาอบแห้งนำมาเป็นอาหาร โคนม พบว่าในส่วนของเศษมันฝรั่งผงมีค่าความชื้น 8.6%, โปรตีน 7.4%, ไขมัน 4.9%, เยื่อไย 4.6%, เถ้า 16.0% และอินทรียวัตถุ 58.5% และเมื่อนำส่วนของ เถ้ามาวิเคราะห์ พบว่ามี แคลเซียม 11%, โพแทสเซียม 1.54%, ฟอสเฟต 0.487% และที่เหลืออีก เล็กน้อยเป็นแร่ธาตุชนิดอื่น ในส่วนของการย่อยได้ของโปรตีนมีค่าเท่ากับ 0% ในโคสาว และ 7.3% ในแกะ ในส่วนของค่าการย่อยได้ทั้งหมดเท่ากับ 52.5-53.9% และค่าของพลังงานเท่ากับ 2.0-2.3 Mcal/kg และเมื่อนำมาผสมลงในสูตรอาหารพบว่าในส่วนของเศษมันฝรั่งผง ให้สมรรถนะการผลิต ที่สูงถึง 22% และมีการกินได้ที่ใกล้เคียงกับเศษมันฝรั่งที่เหลว ในด้านของปริมาณน้ำนม องค์ประกอบของน้ำนม และอัตราการเพิ่มของน้ำหนักตัวไม่แตกต่างกัน

Okine et al. (2005) ได้ทำการศึกษาเกี่ยวกับการใช้เศษมันฝรั่งเหลวโดยการเก็บตัวอย่างสด ทดสอบกับแบคทีเรียที่เพาะเอง 2 ชนิด lactobacillus rhamnosus (L), Rhizopus oryzae (R) และใช้ แบคทีเรียทั้งสองชนิดรวมกัน (L+R) พบว่า แบคทีเรียชนิด R จะมีการลดลงอย่างมีนัยสำคัญ (P<0.05) เมื่อระดับของ pH ต่ำกว่า 3.5 ภายหลังจากการเก็บตัวอย่างสด 50 วัน มีการเพิ่มของกรด แลกติกในทุกกลุ่ม แต่จะต่ำกว่า (P<0.05) เมื่อเปรียบเทียบในกลุ่มที่มีแบกทีเรียชนิด R กับกลุ่ม ควบคุม starch และ pectin จะลดลงเมื่อระดับของน้ำตาลเพิ่มขึ้นหลังจากการเก็บเป็นเวลานาน มี ปริมาณการกินได้ของวัตถุแห้งที่สูงกว่า (P<0.05) เมื่อเปรียบเทียบในกลุ่มที่มีแบกทีเรียชนิด L กับ กลุ่มควบคุม การเสริมแบคทีเรียไม่มีผลต่อการย่อยได้ของเศษมันฝรั่งเหลว (P>0.05)


2.2 การย่อยอาหารในสัตว์เกี้ยวเอื้อง

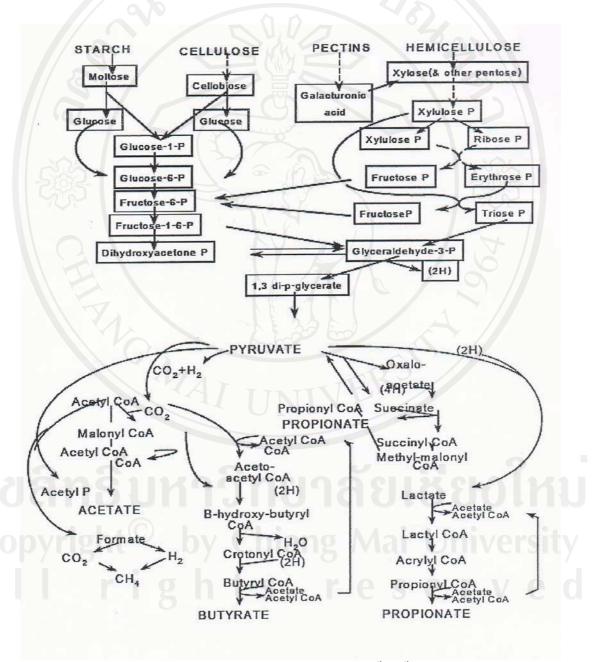
การย่อยอาหาร (digestion) หมายถึงขบวนการที่ทำให้อาหารมีขนาดเล็กลงจนพอดี
ที่ร่างกายจะสามารถดูดซึมได้ (absorb) และนำไปใช้ประโยชน์ได้ (utilize) การย่อยอาหารในโคโดย
ส่วนใหญ่เกิดขึ้นในทางเดินอาหารแสดงในภาพ 2.3 โดยที่อาหารแต่ละชนิดมีการย่อยได้ในทางเดิน
อาหารแต่ละส่วนไม่เท่ากัน ขึ้นอยู่กับประสิทธิภาพการย่อยได้ของทางเดินอาหารในแต่ละส่วนนั้น
เช่น อาหารที่มีส่วนประกอบของเยื่อใยสูงไม่สามารถถูกย่อยได้ที่กระเพาะแท้ (abomasum)
และลำไส้เล็ก แต่จะถูกย่อยสลายในกระเพาะหมัก (rumen) ไส้ติ่ง (caecum) และลำไส้ใหญ่ (colon)
โดยอาศัยเอนไซม์จากจุลินทรีย์

2.3 การย่อยอาหารภายในกระเพาะรูเมนของสัตว์เกี้ยวเอื้อง

อาหารแต่ละชนิดนั้นมีการย่อยได้ในทางเดินอาหารแต่ละส่วนไม่เท่ากัน ทั้งนี้ขึ้นอยู่กับ น้ำย่อยที่สัตว์ขับออกมา ชนิดและปริมาณของจุลินทรีย์ และธรรมชาติของอาหารนั้นๆ เช่น อาหารที่ มีเยื่อใยสูงไม่สามารถย่อยได้ที่กระเพาะแท้และลำไส้เล็ก เพราะเอนไซม์จากตัวสัตว์ไม่สามารถย่อย เยื่อใยได้ แต่จะสามารถย่อยได้บ้างที่กระเพาะรูเมน ใส้ติ่ง และลำไส้ใหญ่โดยอาศัยเอนไซม์จาก จุลินทรีย์เกิดผลผลิตคือ

- 1. กรดใจมันระเหยได้ (short chain fatty acid, SCFA หรือ volatile fatty acid, VFA
- 2. โปรตีนจากจุลินทรีย์ (microbial protein)
- 3. ก๊าซมีเทน และ คาร์บอนไดออกไซด์

ภาพ 2.3 ทางเดินอาหารของโคนม


ที่มา : Wattiaux and Howard (no date)

2.4 การย่อยคาร์โบไฮเดรตภายในกระเพาะรูเมนของสัตว์เกี้ยวเอื้อง

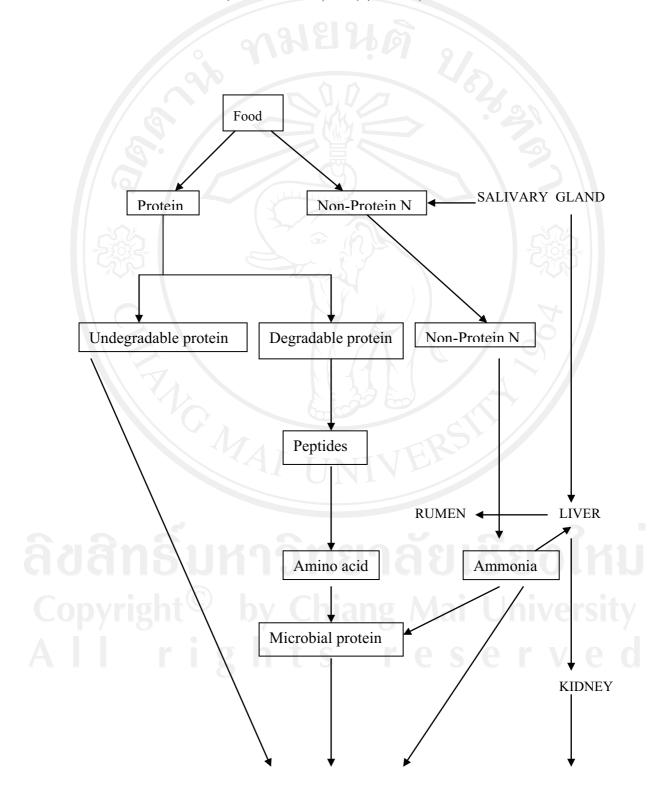
การย่อยอาหารที่เกิดขึ้นในกระเพาะหมักเกิดจากเอนไซม์ที่ผลิต โดยจุลินทรีย์ที่อาศัยอยู่ใน กระเพาะส่วนนี้เท่านั้น เนื่องจากกระเพาะหมักในโคนั้นไม่มีการผลิตเอนไซม์ที่ใช้ในการย่อยอาหาร แต่อย่างใด ขบวนการย่อยและเมตาบอลิซึมของคาร์โบไฮเดรตในกระเพาะหมักแบ่งได้เป็นขั้นตอน ดังต่อไปนี้

- 1. การย่อย Polysaccharide ให้เป็น Monosaccharide
- 2. การเปลี่ยน Monosaccharide ให้เป็น Pyruvate
- 3. การเปลี่ยนใพรูเวท (pyruvate) ให้เป็นกรดใขมันระเหยได้ (volatile fatty acid)
- 4. การสังเคราะห์มีเทน (methane, CH₄)

การย่อยแป้งในกระเพาะหมักเกิดขึ้นโดยเอนไซม์จากจุลินทรีย์ เช่น พวกแบคทีเรีย และ โปรโตซัว ได้ผลผลิตคือน้ำตาลglucose) ซึ่งจุลินทรีย์สามารถนำไปใช้ประโยชน์ได้ทันที จึงพบน้ำตาล พวกนี้เป็นจำนวนน้อยในกระเพาะหมัก ผลจากการเมตาบอลิซึมน้ำตาล จุลินทรีย์จะให้ผลผลิตเป็นกรด ไขมันระเหยได้ คาร์บอนไดออกไซด์ และมีเทน ส่วนความเข้มข้นและสัดส่วนของคไขมันระเหยได้ ที่เกิดขึ้นนั้นจะไม่คงที่ ขึ้นอยู่กับชนิดของอาหารและระยะเวลาในการกินอาหารของโค (ภาพ 2.4)

ภาพ 2.4 การย่อยการ์โบไฮเดรทภายในกระเพาะรูเมนของสัตว์เคี้ยวเอื้อง (Preston and Leng, 1987)

2.4.1 ปัจจัยที่มีผลต่อการย่อยคาร์โบไฮเดรตภายในกระเพาะรูเมน


- 1. ชนิดและส่วนประกอบของธัญพืชในอาหารข้นที่โคได้รับ
- 2. อายุความแก่อ่อนของแป้งในธัญพืช
- 3. อัตราส่วนของธัญพืชในอาหารข้นที่โคได้รับ
- 4. ปริมาณอาหารข้นที่โคได้รับที่มีผลต่ออัตราการใหลผ่าน (rate of passage)
- 5. กรรมวิธีในการแปรรูปอาหาร วัตถุดิบหรือธัญพืชที่นำมาใช้ในการเลี้ยงโค

2.5 การย่อยสลายโปรตีนภายในกระเพาะรูเมนของสัตว์เกี้ยวเอื้อง

การสลายตัวของโปรตีน แบ่งได้เป็น 2 ขั้นตอนดังนี้คือ

- ขบวนการ Proteolysis ทำการแยกรอยต่อของโครงสร้างโปรตีนด้วยวิธี hydrolysis ตรง peptide bond ทำให้ได้ peptide และกรดอะมิโนบางส่วนออกมา
- ขบวนการสลายด้วของกรดอะมิโน โดยขบวนการ deamination และผลิตกรดอินทรีย์ และแอมโมเนีย (NH₃) ซึ่งถูกนำไปใช้ประโยชน์ต่อไป (เทอดชัย, 2542)
 การย่อยสลายโปรตีนในกระเพาะหมัก คือ อาหารประเภทโปรตีนประกอบไปด้วยโปรตีน แท้ (true protein) และในโตรเจนที่ไม่ใช่โปรตีน (NPN) โปรตีนแท้บางส่วนจะถูกย่อยโดยจุลินทรีย์ ในกระเพาะหมัก เรียกโปรตีนเหล่านี้ว่า rumen degradable protein (RDP) ซึ่งจะถูกย่อยเป็นแปปไทด์ และกรดอะมิโน แต่กรดอะมิโนบางชนิดบางส่วนจะถูกย่อยต่อไปเป็นกรดอินทรีย์ แอมโมเนีย และการ์บอนไดออกไซด์ โดยแอมโมเนียที่เกิดขึ้น เปปไทด์ขนาดเล็ก และกรดอะมิโนอิสระจะถูก จุลินทรีย์นำไปใช้ประโยชน์สังเคราะห์เป็นโปรตีนจุลินทรีย์ (microbial protein) และโปรตีน บางส่วนที่ทนทานต่อการย่อยจากจุลินทรีย์ในกระเพาะหมักทำให้ไม่ถูกย่อยและเคลื่อนที่ผ่านไปยัง กระเพาะแท้และลำไส้เล็ก เรียกโปรตีนที่ไม่ถูกย่อยเหล่านี้ว่า rumen undegradable protein (RUP) ส่วนในโตรเจนที่ไม่ใช่โปรตีน (NPN) เมื่อเข้าไปในกระเพาะหมักจะแตกตัวเป็นแอมโมเนีย ซึ่งจะ ถูกจุลินทรีย์นำไปสังเคราะห์เป็นโปรตีนจุลินทรีย์ ซึ่งระดับความเข้มข้นของแอมโมเนียในโตรเจน ในกระเพาะหมักสามารถวัดได้โดยวิธี Conway method (Voigt and Steger, 1967) หรือโดยวิธีการ กลั่น และระดับแอมโมเนียในโตรเจนที่เหมาะสมต่อการสังเคราะห์โปรตีนจุลินทรีย์จะอยู่ในช่วง

3-8 mg/100ml (Satter and Roffler, 1975) เมื่อเซลล์ของจุลินทรีย์และโปรตีนที่ไม่ถูกย่อยใน กระเพาะหมักเคลื่อนที่ไปยังกระเพาะแท้และลำไส้เล็กจะถูกเอนไซม์ในทางเดินอาหารย่อย และคูค ซึมไปใช้ประโยชน์ต่อไป (McDonald *et al.*, 1995) (ภาพ 2.5)

ภาพ 2.5 ขบวนการย่อยโปรตีนในกระเพาะรูเมน

ที่มา : ดัดแปลงจาก McDonald et al. (1995)

กิจกรรมของจุลินทรีย์นั้นจะแตกต่างกันออกไปทั้งนี้ขึ้นอยู่กับชนิดของอาหาร แต่อย่างไรก็ ตาม pH ภายในกระเพาะหมักอาจมีอิทธิพลมากกว่าโดย pH ที่เหมาะสมต่อการเข้าสลายโปรตีนของ จุลินทรีย์อยู่ระหว่าง 6-7 ซึ่งสามารถวัดได้โดยการเก็บของเหลวจากกระเพาะหมัก (rumen fluid) ในส่วนล่างของกระเพาะ (ventral sac) มาวัดค่า pH (ด้วยเครื่องวัดแบบ pH scan BNC™ ซึ่งมีค่า ความถูกต้อง ±0.1) และกว่า 80 เปอร์เซ็นต์ของในโตรเจนของจุลินทรีย์ถูกสังเคราะห์จาก แอมโมเนีย ส่วนอีก 20 เปอร์เซนต์ ใช้กรดอะมิโนโดยตรง ประมาณ 59 เปอร์เซ็นต์ของในโตรเจน จากอาหาร จะถูกสลายในกระเพาะหมัก ปริมาณในโตรเจนที่ถูกย่อย 29 เปอร์เซ็นต์จะถูกนำไปใช้ ในรูปของกรดอะมิโน อีก 71 เปอร์เซ็นต์ จะถูกเปลี่ยนให้เป็นแอมโมเนีย อย่างไรก็ตามเรื่องนี้ขึ้นอยู่ กับลักษณะธรรมชาติของอาหารโปรตีนแต่ละชนิด (เมธา, 2533)

2.5.1 ปัจจัยที่มีผลต่อการย่อยสลายโปรตีนภายในกระเพาะรูเมน

- 1. ความสามารถในการในการสลายโปรตืน (protein solubility) โดยโปรตืนที่สลายได้ มากมีโอกาสที่จะถูกย่อยสลายโดยจุลินทรีย์ในกระเพาะหมักได้มาก
- 2. วิธีการให้อาหารเป็นปัจจัยที่มีความสำคัญต่อการย่อยสลายของโปรตีนในกระเพาะ หมัก ถ้าโคได้รับอาหารในปริมาณที่มากระยะเวลาที่อาหารอยู่ในกระเพาหมัก (retention time) ก็จะ ลดลงมีผลทำให้อาหารเคลื่อนที่ไปยังทางเดินอาหารส่วนอื่นๆ (rate of passage) เร็วขึ้น จุลินทรีย์มี โอกาสสลายโปรตีนได้ลดลงทำให้โปรตีนรอดพ้นจากการย่อยสลายจากจุลินทรีย์เพิ่มขึ้น นอกจากนี้ ยังพบว่า ขนาดของชิ้นอาหารก็มีความสัมพันธ์กับระยะเวลาที่อาหารจะคงอยู่ในกระเพาะหมักโดย อาหารที่มีขนาดใหญ่หรืออาหารที่ไม่ได้สับให้เล็กจะมีระยะเวลาที่อาหารจะคงอยู่ในกระเพาะหมัก มากกว่าอาหารที่มีขนาดเล็ก
- 3. ปัจจัยจากตัวสัตว์ สำหรับสัตว์ชนิดต่างๆ กัน เช่น โค และแกะ โดยโคนมจะมีค่า retention time สูงกว่าแกะ (1.73-3.7 วัน กับ 0.8-2.2 วัน) เมื่อมี retention time สูง โอกาสที่โคจะ

เคี้ยวเอื้องก็มีสูงกว่าแกะ และทำให้ชิ้นอาหารมีขนาดเล็กกว่าจึงเป็นการเพิ่มโอกาสที่จุลินทรีย์จะเข้า ทำการย่อยสลายอาหารได้มากขึ้นด้วย (เทอดชัย, 2542)

2.6 ความเป็นกรด-ด่างภายในกระเพาะรูเมนของสัตว์เคี้ยวเอื้อง

ค่าความเป็นกรด-ด่างในกระเพาะรูเมน (rumen pH) จะแปรปรวนไปตามชนิดของอาหารที่ สัตว์เคี้ยวเอื้องกินเข้าไปและเวลาที่ทำการวัด เมื่อสัตว์กินอาหารประเภทแป้งเข้าไปใน กระเพาะรูเมนจะถูกเอนไซม์จากจุลินทรีย์ย่อย ผลที่ได้จากการย่อยการ์โบไฮเดรตโดยจุลินทรีย์ จะเป็นกรคใจมันระเหยได้ (volatile fatty acid) ส่วนหนึ่งของกรคใจมันระเหยได้จะถูกจุลินทรีย์ นำไปใช้เป็นแหล่งพลังงานในการคำรงชีวิต และเพิ่มจำนวนประชากรของจุลินทรีย์ ้ เมื่อเปรียบเทียบระหว่างแป้งกับคาร์ โบไฮเครตที่เป็น โครงสร้างของพืช (เยื่อใย) พบว่าแป้งถกย่อย สลายได้เร็วกว่าให้สัดส่วนของ propionic acid และ/หรือ butyric acid สูงกว่า และทำให้ความเป็น กรด-ด่าง (pH) ในกระเพาะรูเมนลดต่ำลง เนื่องจากในกระบวนการย่อยแป้งนั้นจะเกิด lactic acid เป็นจำนวนมากและจะถูกเปลี่ยนไปเป็น propionic acid ต่อไป (เทอดชัย, 2535; เทอดชัย, 2542) กรดที่เกิดจากกระบวนการหมักย่อยตามทฤษฎีแล้วสามารถทำให้ความเป็นกรด ในกระเพาะรูเมนต่ำลงเหลือ 2.5-3.0 ได้แต่ในสภาพปกติความเป็นกรด -ค่าง ในกระเพาะรูเมน เนื่องจากฟอสเฟต (phosphate) และ ใบคาร์บอเนต (bicarbonate) จะมีค่าอย่ในช่วง 5.5-6.5 ในน้ำลายทำหน้าที่เป็นบัฟเฟอร์ (buffer) รักษาสภาพความเป็นกรด -ด่างไว้ ประกอบกับการดูดซึม กรคอย่างรวดเร็วทำให้รักษาสภาพความเป็นกรด -ด่างไว้ได้ (McDonald และความเป็นกรด-ด่าง (pH) ในกระเพาะรูเมนสามารถบ่งบอกถึงการย่อยสลายของคาร์โบไฮเดรตได้ โดยถ้าหากความเป็นกรด -ด่างลดลงแสดงว่ามีการย่อยสลายคาร์โบไฮเดรตเกิดขึ้น ถ้าหากลดลง อย่างรวดเร็วแสดงว่าอาหารนั้นมีคาร์โบไฮเดรตที่ย่อยง่ายนั้นหมายถึงมีพลังงานจำนวนมากใน กระเพาะรูเมน ในทางตรงกันข้ามถ้าความเป็นกรด -ค่าง (pH) ไม่ลดลงแสดงว่าคาร์โบไฮเดรตใน อาหารนั้นย่อยสลายได้ยาก (เทอคชัย, 2535; เทอคชัย, 2542)

2.7 แอมโมเนียในโตรเจนภายในกระเพาะรูเมนของสัตว์เคี้ยวเอื้อง

แอมโมเนียในโตรเจนในกระเพาะรูเมน (ruminal ammonia - nitrogen) เป็นสารตัวกลาง ระหว่างการย่อยโปรตีนโดยจุลินทรีย์และการสังเคราะห์โปรตีน ระดับความเข้มข้นของแอมโมเนีย ในกระเพาะรูเมนนั้นสามารถบ่งบอกถึงการย่อยสลายของโปรตีนจากอาหารในกระเพาะรูเมนได้ โดยถ้าหากระดับแอมโมเนียในกระเพาะหมักต่ำอาจแสดงว่าอาหารนั้นมีโปรตีนต่ำ หรือโปรตีนย่อ

ยอยได้ต่ำ หรือโปรตีนสามารถทนทานต่อการย่อยสถาย มีผลทำให้การเจริญเติบโต หรือการ สังเคราะห์โปรตีนของจุลินทรีย์ต่ำลง ในทางตรงกันข้ามหากในอาหารมีโปรตีนมากเกินไป หรือมี การย่อยได้ของโปรตีนมากเกินกว่าการสังเคราะห์โปรตีน จะเกิดการสะสมแอมโมเนียในกระเพาะรู เมน และมากเกินกว่าระดับความเข้มข้นที่เหมาะสมต่อการสังเคราะห์โปรตีน แอมโนเนียจะถูกดูด ซึมผ่านกระแสเลือดไปยังตับและเปลี่ยนเป็นยูเรีย แต่ยูเรียส่วนใหญ่จะถูกขับออกทางปัสสาวะ และ โปรตีนที่จุลินทรีย์ สังเคราะห์ได้นั้นเป็นโปรตีนที่สังเคราะห์มาจากแอมโมเนีย 40-70 เปอร์เซ็นต์ นอกนั้นใช้ในโตรเจนจากแหล่งอื่นคือ เปปไทด์ และกรดอะมิโน ในการสังเคราะห์โปรตีน (เทอดชัย, 2542; McDonald et al., 1995)

ระดับความเข้มข้นของแอม โมเนียที่เพียงพอสำหรับการสังเคราะห์โปรตีน ไม่ควรต่ำกว่า 5 mg/100 ml การเพิ่มระดับความเข้มข้นของแอม โมเนีย ไม่มีผลทำให้จุลินทรีย์มีการสังเคราะห์ โปรตีนเพิ่มขึ้น ปกติความเข้มข้นของแอม โมเนียจะมีค่าสูงสุดหลังจากสัตว์กินอาหาร 1-2 ชั่ว โมง หลังจากนั้นจะลดต่ำลง การรักษาระดับความเข้มข้นของแอม โมเนียให้อยู่ในช่วง 3-8 mg/100 ml ให้นานจะทำให้มีการสังเคราะห์โปรตีนจากจุลินทรีย์อย่างมีประสิทธิภาพ (Satter and Slyter, 1974)

2.8 ความสัมพันธ์ระหว่างความเป็นกรด -ด่าง และแอมโมเนียในโตรเจนภายในกระเพาะรูเมนของ สัตว์เคี้ยวเอื้อง

ปริมาณ โปรตีนจากจุลินทรีย์ที่เข้าไปยังลำไส้เล็กนั้นจะขึ้นอยู่กับการสังเคราะห์โปรตีนของ จุลินทรีย์ (microbial protein synthesis) โดยมีปัจจัยที่สำคัญคือ แหล่งอาหารพลังงานและ ในโตรเจน โดยถ้ามีแหล่งของพลังงานและ ในโตรเจนเพียงพอและเหมาะสมแล้ว การสังเคราะห์โปรตีนของ จุลินทรีย์ก็จะเป็นไปอย่างมีประสิทธิภาพ (เทอดชัย, 2542)

ดังนั้น การวัดความเป็นกรด -ด่าง ในกระเพาะรูเมน (ruminal pH) ซึ่งบ่งบอกถึงลักษณะการ ย่อยสลายแหล่งพลังงาน คือ คาร์โบ ไฮเดรต และการวัดความเข้มข้นของแอม โมเนียใน กระเพาะรูเมนซึ่งบ่งบอกถึงลักษณะการย่อยสลายโปรตีน ที่ชั่วโมงต่างๆ หลังจากสัตว์กินอาหารที่ จะทำให้ทราบถึงอาหารนั้นมีความเหมาะสมต่อการสังเคราะห์โปรตีนจากจุลินทรีย์มากน้อยเพียงใด โดยถ้าการย่อยสลายทั้งคาร์โบ ไฮเดรตและโปรตีนเกิดขึ้นอย่างสอดคล้องกัน ทำให้สันนิษฐานได้ว่า จะเกิดการสังเคราะห์โปรตีนจากจุลิทรีย์อย่างมีประสิทธิภาพ