TABLE OF CONTENTS

ं श्राद्यात्रकः	Page
Acknowledgement	iii
Abstract in Thai	iv
Abstract in English	vi
Table of contents	viii
List of Tables	xi
List of Figures	xvii
Abbreviations and Symbols	xx
Chapter 1 Introduction	1
Chapter 2 Literature Reviews	y 4
1. Tangerine	4
1.1 Fruit structure	5
1.2 Fruit development	7
1.3 Maturation, ripening and senescence of citrus fruit	8
1.4 Fruit composition	11
2. Plant nutrients	15
3. Nutrient balance	16
4. Citrus nutrition	17
4.1 Nitrogen (N)	
4.2 Phosphorus (P)	18
Copyrigh 4.3 Potassium (K) Chiang Mai Un	IIVe19SITY
4.4 Calcium (Ca) 4.5 Magnesium (Mg)	r v ₂₀ ²⁰ e d
4.6 Iron (Fe)	20
4.7 Manganese (Mn)	21

4.8 Copper (Cu)	21
4.9 Zinc (Zn)	22
4.10 Boron (B)	22
5. Diagnosis of nutrient problems	23
5.1 Plant tissue analysis	24
5.2 Soil testing	25
6. Achievement research in Thailand	28
Chapter 3 Tangerine Production Systems in Chiang Mai Province	30
Introduction	30
Materials and Methods	30
Results and Discussion	31
Conclusions and Recommendations	41
Chapter 4 Assessment of Appropriate Tangerine-Leaf Sampling	42
Position for Nutrient Analysis	
Introduction	42
Materials and Methods	42
Results and Discussion	44
Conclusions and Recommendations	45
Chapter 5 Change of Leaf and Twig Nutrient Concentration During	48
Fruit Development	
Introduction	48
Materials and Methods	49
Results and Discussion	50
COOVING Conclusions and Recommendations	528 1
Chapter 6 Changes of Nutrient Content and Fruit Components During Fruit Development	⁵⁵ e C
Introduction	55
Materials and Methods	55

Results and Discussion	56
Conclusions and Recommendations	61
Chapter 7 Relationship between Fertilizer Application	on and Leaf 62
Nutrient Concentrations for Yield and C	Quality
Introduction	62
Materials and Methods	62
Results and Discussion	63
Conclusions and Recommendations	63
Chapter 8 Effect of Fertilizer Ratio on Yield and Qua	ality of Fruit 87
Introduction	87
Materials and Methods	88
Results and Discussion	89
Conclusions and Recommendations	100
Chapter 9 Use of Soil Analysis for Fertilizer Recommendation	mendation 101
Introduction	101
Materials and Methods	102
Results and Discussion	103
Conclusions and Recommendations	146
Chapter 10 Conclusions	148
References	150
Appendix A	163
Appendix B	8 6 8 6 168
Curriculum vitae	170
opyright $^{\omega}$ by Chiang M	Mai University
II rights re	served
ii iigiita it	, J C I V C U

LIST OF TABLES

Table 998181867	Page
3.1 Preceding crops found before tangerine cultivation in Fang district,	32
Chiang Mai in 2006.	
3.2 Land ownership certificate of tangerine orchardists in Fang district,	32
Chiang Mai in 2006.	
3.3 Cultivars of tangerine grown in Fang district, Chiang Mai in 2006.	34
3.4 Tree age of tangerine in Fang district, Chiang Mai in 2006.	34
3.5 Planting methods of tangerine in Fang district, Chiang Mai in 2006.	3 5
3.6 Tree spacing of tangerine in Fang district, Chiang Mai in 2006.	36
3.7 Irrigation systems of tangerine orchard in Fang district, Chiang Mai	36
in 2006.	
3.8 Source of irrigation water for tangerine orchard in Fang district,	37
Chiang Mai in 2006.	
3.9 Formula and quantity of fertilizer applied in tangerine at different	38
stages in Fang district, Chiang Mai in 2006.	
3.10 Source of knowledge gained by tangerine orchardists in Fang district	, 40
Chiang Mai in 2006.	
3.11 Market flow of tangerine produce in Fang district, Chiang Mai in	41
132006.5111499118193813813)[Ki
4.1 Nutrient concentration in 90-day-old tangerine cv. Sainampueng	46
leaf at different leaf position.	ersity
5.1 Concentration of elements in tangerine cv. Sainampueng leaf at	53
different time of taking samples.	VE
5.2 The nutrient concentration in tangerine cv. Sainampueng twig at	54
different ages.	

Table	Page
6.1 Fruit size, fruit weight, thickness of peel, peel colour, total soluble solids (TSS), vitamin C, juice percentage, pH of juice, titratable acidity (TA) and juice colour of tangerine cv. Sainampueng fruit at different ages.	58
6.2 Nutrient contents in tangerine cv. Sainampueng fruit at different ages.	60
7.1 The quantity of nitrogen, phosphorus and potassium fertilizer of tangerine cv. Sainampueng in the selected farmers' orchard.	64
7.2 The concentration of elements in soil of tangerine cv. Sainampueng in the selected farmers' orchard.	66
7.3 The quality (fruit size, thickness of peel, fruit weight, juice percentage pH of juice, total soluble solids (TSS), titratable acidity (TA), vitamic C, yield and taste) of tangerine cv. Sainampueng.	
7.4 The concentration of elements in tangerine cv. Sainampueng leaf.	72
8.1 Effect of adjusted N:P ₂ O ₅ :K ₂ O ratio of the fertilizer on fruit size, peel thickness, fruit weight of 10-month-old tangerine cv. Sainampueng fruit.	92
8.2 Effect of adjusted N:P ₂ O ₅ :K ₂ O ratio of the fertilizer on juice	96
percentage, pH of juice, TSS, TA, TSS/TA ratio and vitamin C of 10-month-old tangerine cv. Sainampueng fruit.	ใหม
8.3 Effect of adjusted N:P ₂ O ₅ :K ₂ O ratio on nutrient concentration in leaf	99
of 10 months old tangerine cv. Sainampueng fruit.	ersity
9.1 Properties of the loam soil before the experiment trial and their optimum nutrient concentration.	104
9.2 Properties of the clay soil before the experiment trial and their	105

Table	Page
9.3 Application rate of fertilizers among the treatments which were conducted in loam soil.	106
9.4 Application rate of fertilizers among the treatments which were conducted in clay soil.	107
9.5 Soil properties of the treatments after the experiment which was conducted in loam soil and at the optimum nutrient concentration.	109
9.6 Soil properties of the treatments after the experiment which was conducted in clay soil and at the optimum nutrient concentration.	110
9.7 Nutrient concentration in leaf of tangerine cv. Sainampueng as affected by various fertilizer applications in loam soil.	112
9.8 Nutrient concentration in leaf of tangerine cv. Sainampueng as affected by various fertilizer applications in clay soil.	113
9.9 Fruit size of tangerine cv. Sainampueng between fertilizer application treatments.	115
9.10 Peel thickness of tangerine cv. Sainampueng between fertilizer application treatments.	116
9.11 Fruit weight of tangerine cv. Sainampueng between fertilizer application treatments.	117
9.12 Yield of tangerine cv. Sainampueng between fertilizer application treatments.	118
9.13 Juice percentage of tangerine cv. Sainampueng fruit between fertilizer application treatments.	119 / ersit \
9.14 The pH of tangerine cv. Sainampueng juice between fertilizer application treatments.	120 V
9.15 Vitamin C of tangerine cv. Sainampueng fruit between fertilizer application treatments.	121

Table	Page
9.16 Total soluble solids (TSS) of tangerine cv. Sainampueng fruit	122
between fertilizer application treatments.	
9.17 Titratable acidity (TA) of tangerine cv. Sainampueng fruit	123
between fertilizer application treatments.	1/12
9.18 The TSS/TA ratio of tangerine cv. Sainampueng fruit between	124
fertilizer application treatments.	
9.19 Fruit size and peel thickness of tangerine cv. Sainampueng	125
between fertilizer application treatments in loam soil.	30%
9.20 Fruit weight and yield of tangerine cv. Sainampueng between	126
fertilizer application treatments in loam soil.	906
9.21 Peel colour and juice colour of tangerine cv. Sainampueng	127
between fertilizer application treatments in loam soil	6
9.22 Juice percentage and pH of juice of tangerine cv. Sainampueng	128
fruit between fertilizer application treatments in loam soil.	
9.23 Vitamin C and total soluble solids (TSS) of tangerine cv.	129
Sainampueng fruit between fertilizer application treatments in	
loam soil.	
9.24 Titratable acidity (TA) and TSS/TA ratio of tangerine cv.	130
Sainampueng fruit between fertilizer application treatments in	9
a a la loam soil. I I I I I I I I I I I I I I I I I I I	เลโหเ
9.25 Fruit size and peel thickness of tangerine cv. Sainampueng	131
between fertilizer application treatments in clay soil.	iversity
9.26 Fruit weight and yield of tangerine cv. Sainampueng between	132
fertilizer application treatments in clay soil.	r v e
9.27 Peel colour and juice colour of tangerine cv. Sainampueng	133
between fertilizer application treatments in clay soil	133

Table	Page
9.28 Juice percentage and pH of juice of tangerine cv. Sainampueng fruit between fertilizer application treatments in clay soil.	34
9.29 Vitamin C and total soluble solids (TSS) of tangerine cv. Sainampueng fruit between fertilizer application treatments in clay soil.	135
9.30 Titratable acidity (TA) and TSS/TA ratio of tangerine cv. Sainampueng fruit between fertilizer application treatments in clay soil.	136
9.31 Concentrations of nitrogen (N), phosphorus (P) and potassium (K) in tangerine cv. Sainampueng fruits as affected by various fertilizer application treatments in loam soil.	138
9.30 Concentrations of calcium (Ca) and magnesium (Mg) in tangerine cv. Sainampueng fruits as affected by various fertilizer application treatments in loam soil.	139
9.31 Concentrations of iron (Fe), manganese (Mn) and copper (Cu) in tangerine cv. Sainampueng fruits as affected by various fertilizer application treatments in loam soil.	140
9.32 Concentrations of zinc (Zn) and boron (B) in tangerine cv.Sainampueng fruits as affected by various fertilizer application treatments in loam soil.	141 [H]
9.33 Concentrations of nitrogen (N), phosphorus (P) and potassium (K) in tangerine cv. Sainampueng fruits as affected by various fertilizer application treatments in clay soil.	e 142 it y

Tabl	e	Page
9.34	Concentrations of calcium (Ca) and magnesium (Mg) in tangerine	143
	cv. Sainampueng fruits as affected by various fertilizer application	
	treatments in clay soil.	
9.35	Concentrations of iron (Fe), manganese (Mn) and copper (Cu) in	144
	tangerine cv. Sainampueng fruits as affected by various fertilizer	
	application treatments in clay soil.	
9.36	Concentrations of zinc (Zn) and boron (B) in tangerine cv.	145
	Sainampueng fruits as affected by various fertilizer application	2
	treatments in clay soil.	3
9.37	The expense of fertilizer applied in the treatments of the tangerine	147
	cv. Sainampueng experimented in loam and clay soil.	. //
	三	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

141 UNIVERS

LIST OF FIGURES

Fig	ure NHEIRA	Page
1.1	Conceptual frameworks for the use of nutrient balance for improving	3
	fruit yield and quality of tangerine (Citrus reticulata Blanco)	
	cv. Sainampueng.	
4.1	Leaf position of tangerine cv. Sainampueng for nutrient concentration analysis.	44
4.2	Relationship between nutrient concentration in soil and concentration	47
	of elements in leaf.	
5.1	Sampled leaves taken for nutrient concentration analysis.	50
7.1	Relationship between N fertilizer and fruit size, fruit weight,	74
\mathbb{N}	juice percentage, total soluble solids (TSS), titratable acidity (TA)	
	and yield of tangerine cv. Sainampueng.	
7.2	Relationship between P fertilizer and fruit size, fruit weight,	75
	juice percentage, total soluble solids (TSS), titratable acidity (TA)	
	and yield of tangerine cv. Sainampueng.	
7.3	Relationship between K fertilizer and fruit size, fruit weight,	76
	juice percentage, total soluble solids (TSS), titratable acidity (TA)	
	and yield of tangerine cv. Sainampueng.	>
7.4	Relationship between N concentration in leaves and fruit size,	77
	fruit weight, juice percentage, total soluble solids (TSS),	
D)	titratable acidity (TA) and yield of tangerine cv. Sainampueng.	rsity
7.5	Relationship between P concentration in leaves and fruit size,	78
	fruit weight, juice percentage, total soluble solids (TSS),	
	titratable acidity (TA) and yield of tangerine cv. Sainampueng.	

Figure	Page
7.6 Relationship between K concentration in leaves and fruit size,	79
fruit weight, juice percentage, total soluble solids (TSS),	
titratable acidity (TA) and yield of tangerine cv. Sainampueng.	
7.7 Relationship between Ca concentration in leaves and fruit size,	80
fruit weight, juice percentage, total soluble solids (TSS),	
titratable acidity (TA) and yield of tangerine cv. Sainampueng.	
7.8 Relationship between Mg concentration in leaves and fruit size,	81
fruit weight, juice percentage, total soluble solids (TSS),	
titratable acidity (TA) and yield of tangerine cv. Sainampueng.	51
7.9 Relationship between Fe concentration in leaves and fruit size,	82
fruit weight, juice percentage, total soluble solids (TSS),	
titratable acidity (TA) and yield of tangerine cv. Sainampueng.	
7.10 Relationship between Mn concentration in leaves and fruit size,	83
fruit weight, juice percentage, total soluble solids (TSS),	
titratable acidity (TA) and yield of tangerine cv. Sainampueng.	
7.11 Relationship between Cu concentration in leaves and fruit size,	84
fruit weight, juice percentage, total soluble solids (TSS),	
titratable acidity (TA) and yield of tangerine cv. Sainampueng.	
7.12 Relationship between Zn concentration in leaves and fruit size,	85
fruit weight, juice percentage, total soluble solids (TSS),	IK1
titratable acidity (TA) and yield of tangerine cv. Sainampueng.	
7.13 Relationship between B concentration in leaves and fruit size,	861
fruit weight, juice percentage, total soluble solids (TSS),	, 0
titratable acidity (TA) and yield of tangerine cv. Sainampueng.	e
8.1 The effect of adjusted nutrient ratio of the fertilizer on fruit size 8	9
of tangerine cv. Sainampueng.	

Figure	Page
8.2 The effect of adjusted nutrient ratio of the fertilizer on peel	90
thickness of tangerine cv. Sainampueng.	
8.3 The effect of adjusted nutrient ratio of the fertilizer on fruit	90
weight of tangerine cv. Sainampueng.	
8.4 The effect of adjusted nutrient ratio of the fertilizer on juice	93
percentage of tangerine cv. Sainampueng.	5 \\
8.5 The effect of adjusted nutrient ratio of the fertilizer on pH of	93
tangerine cv. Sainampueng juice.	572
8.6 The effect of adjusted nutrient ratio of the fertilizer on TSS of	94
tangerine cv. Sainampueng fruit.	06
8.7 The effect of adjusted nutrient ratio of the fertilizer on TSS:TA	94
ratio of tangerine cv. Sainampueng fruit.	
8.8 The effect of adjusted nutrient ratio of the fertilizer on TA of	95
tangerine cv. Sainampueng fruit.	
8.9 The effect of adjusted nutrient ratio of the fertilizer on vitamin C	95
of tangerine cv. Sainampueng fruit.	
8.10 The effect of adjusted nutrient ratio of the fertilizer on	98
nutrient content in tangerine cy. Sainampueng fruit.	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

		0	गुश्राध्यक ,
	n.	= 0 }	กรัม
	ກ ກ.	\equiv	กิโลกรัม
	ซม.	= /	เซนติเมตร
	ນຄ.	=/	มิลลิกรัม
	ນຄ. 🚺	/ = /	มิลลิลิตร
	%	=	Percent
	°C	=	Degree Celsius
	& 705	=	Ampersand, And
	I	=	One
	II	=	Two
	III	=	Three
	1	=	Per
	*	1	Significant differences
	1 st	=(>)	First
	2 nd	=	Second
	3 rd	=	Third
	4^{th}	=	Fourth
	5 th	€ _	Fifth
	6 th	FU	Sixth Sng18g18g1hu
	AAS	=	Atomic Absorption Spectrophotometer
0	AD/righ	Ī	anno Domini hiang Mai University
	ANOVA	=	Analysis of Variance eserve
	В	= "	Boron
	BC	=	Before Christ
	Ca	=	Calcium

CA Citric acid Calcium chloride CaCl₂ cc a metric unit of volume equal to one thousandth of a liter Chlorine Cl Centimeter cm **CNR** Critical Nutrient Range **CRD** Completely randomized design Cu Copper Cultivar cv. CV Coefficient of variation Distilled water or Deionizer water DI water **DRIS** Diagnosis and Recommendation Integrated System = Diethylene triamine pentaacetic acid **DTPA** Ethylene diamine tetraacetic acid **EDTA** et al. and others etc. et cetera exempli gratia, for example e.g. Fe Iron Statistical test F-testHectare ha id est, that is i.e. าัยเชียงใหม*่* Indoleacetic acid IAA Gram Green Potassium Potassium oxide

Kilogram

Liter

kg l La_2O_2 Lanthanum oxide

LSD Least significant difference

m

M Molar (mole/liter)

Mg Magnesium

Milliliter ml

Millimeter mm

Mn Manganese

N Normal

N Nitrogen

N-15 Isotope of nitrogen

Na Sodium

NH₄OAc Ammonium acetate

nm Nanometer

No., no. Number

not significant difference ns

New South Wales **NSW**

OM Organic matter

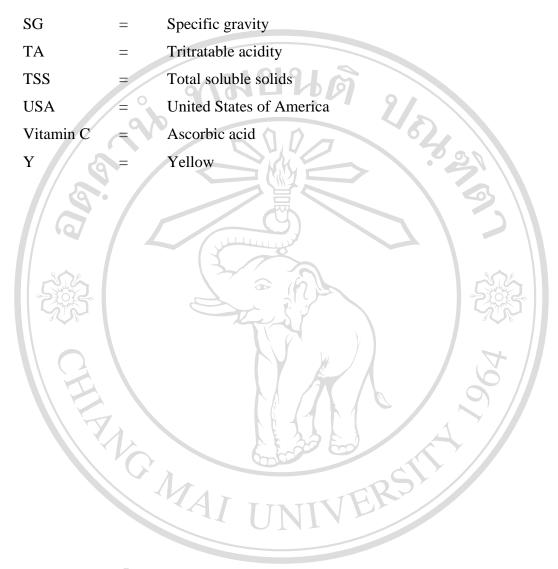
P Phosphorus

 P_2O_5 Phosphorus oxide

Polymerase chain reaction cycle PCR cycle

a logarithmic measure used to state the acidity or alkalinity of a

chemical solution


ppm | parts per million

Red

R R^2 The coefficient of determination

RNA Ribonucleic acid

S Sulfur

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved