Table of Contents

	Page
Acknowledgements	iii
Abstract (English)	v
Abstract (Thai)	viii
Table of Contents	xi
List of Tables	xv
List of Figures	xviii
Abbreviations	XX
Chapter 1 Introduction	1
1.1 Background	1
1.2 Objectives	3
Chapter 2 Literature reviews	4
2.1 Hybrid rice	7
2.2 Male sterile system	10
2.3 Inheritance of TGMS and tagging the TGMS gene	12
2.4 DNA extraction	19
2.5 Polymerase chain reaction (PCR)	20
2.6 Types of markers	25
2.6.1 Morphological markers	e ₂₅ 0
2.6.2 Biochemical markers	25
2.6.3 Molecular markers	26
2.7 Molecular markers	27

2.7.1 Restriction fragment length polymorphic (RFLP) markers	29
2.7.2 Random amplified polymorphic DNA (RAPDs) markers	30
2.7.3 Simple sequence length polymorphism (SSLP) or	
Simple sequence repeat (SSR) or microsatellite markers	31
2.7.4 Sequence characterized amplified region markers (SCAR)	32
2.7.5 Single-strand conformation polymorphisms (SSCP)	32
2.7.6 Single nucleotide polymorphisms (SNPs)	34
Chapter 3 Critical temperature testing for thermo-sensitive genic male	
sterility induction	35
3.1 Introduction	35
3.2 Materials and methods	37
Pollen sterility test	37
3 3 Results	39
3.5 Tesuits	57
3.3.1 Critical temperature and plant development stage	
including pollen sterility	39
3.3.2 Seed set evaluation	41
3.3.3 Tillering, booting and flowering evaluation	42
3.3.4 Plant height development	44
3.3.5 Tillers per plant development	45
3.3.6 Panicles per plant development	46
3.4 Discussion and Conclusion	48
Chapter 4 Inheritance of thermo-sensitive genic male sterile characteristic	50
4.1 Introduction	50
4.2 Materials and methods	51

4.2.1 Pollen viability test	52
4.2.2 Correlation test	53
4.3 Results	53
4.4 Discussion and Conclusion	56
Chapter 5 Study of molecular marker linked TGMS character	58
5.1 Introduction	58
5.2 Materials and Methods	59
5.2.1 Plant materials	59
5.2.2 DNA extraction	60
5.2.3 Simple sequence repeat (SSR) markers analysis	61
5.2.4 Random amplified polymorphic DNA (RAPDs) marker	
analysis	65
5.2.5 Single-strand conformation polymorphism (SSCP) markers	
analysis	66
5.3 Results	69
5.3.1 Phenotyping and DNA extraction	69
5.3.2 Simple sequence repeat (SSR) markers analysis	69
5.3.3 Random amplified polymorphic DNA (RAPDs) markers	
opyright [©] analysisy Chiang Mai Universi	74
5.3.4 Single-strand conformation polymorphism (SSCP) analysis	76
5.4 Discussion and Conclusion	82
Chapter 6 Development of Thai rice TGMS variety	
6.1 Introduction	85
6.2 Materials and methods	86

6.3 Results	87
6.3.1 Evaluation of agronomic characters of progenies in	
backcross generations	87
6.3.1.1 Plant height of BC_nF_1 and BC_nF_2 generations	87
6.3.1.2 Tillering ability of BC_nF_1 and BC_nF_2 generations	89
6.3.1.3 Grain dimensions of BC_nF_1 and BC_nF_2 generations	91
6.3.1.4 Grain weight of BC _n F ₂ generation	93
6.3.2 Development of Thai rice TGMS lines	95
6.4 Discussion and Conclusion	99
Chapter 7 General discussion and Conclusion	101
Summary and Recommendation	105
Recommendations	106
References	108
Curriculum Vitae	122

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

List of Tables

Tab	ble	Page
3.1	The experimental treatments of critical temperature for inducing male	
	sterility of TGMS line	38
3.2	Average fertile pollens (%) of TGMS line grown under different	
	temperatures in mini-phytotron condition	40
3.3	Seed set evaluation of TGMS line grown under different temperatures in	
	mini-phytotron condition	41
3.4	Tillering, booting and flowering of TGMS line grown at 22 °C in mini-	
	phytotron condition.	43
3.5	Tillering, booting and flowering date of TGMS line grown at 24 °C in	
	mini-phytotron condition	43
3.6	Tillering, booting and flowering date of TGMS line grown at 26 °C in	
	mini-phytotron condition	44
3.7	Plant height of TGMS line grown under different temperatures in mini-	
	phytotron condition	45
3.8	Tiller per plant of TGMS line at harvest when grown under different	
	temperatures in mini- phytotron condition	46
3.9	Panicles per plant of TGMS line at harvest when grown under different	
	temperatures in mini- phytotron condition	47
4.1	Male sterility grouping scale as described by Dong <i>et al.</i> (2000)	53

Table		Page
4.2	Amount of fertile and sterile plants of parental parents and their F_2	
	generation derived from crossing between T29s and KDML105 parents,	
	materials were grown under high temperature above 26 °C and short day	1
	length condition	54
4.3	Number of red culm with red auricle plants and white culm with white	
	auricle plants in F_1 , F_2 and BC_1F_1 population	55
4.4	Number of red apiculi with purple stigma plants and white apiculi with	
	purple stigma plants in F_1 , F_2 and BC_1F_1 population	56
5.1	Simple sequence repeat (SSR) primers mapping for molecular marker	
	linked TGMS characters	63
5.2	Simple sequence repeat (SSR) primers mapping for molecular marker	
	linked TGMS characters (continue)	64
5.3	SSCP primers (gene) position, melting temperature (TM: °C), descriptio	n,
	PCR product size (bp), single nucleotide polymorphisms (SNP) and	
	original clone	67
5.4	20 SSR primers showed polymorphisms in F ₂ population between	
	their parental varieties	70
6.1	Variation in paddy grain lengths of parents, selfed and backcross	
	generation	91
6.2	Dimension of paddy grain and brown grain of parents, F_2 and BC_nF_2	
	generation	93
6.3	Weight of paddy grain, brown rice grain and husk of parents, F ₂ and BC	$_{n}F_{2}$
	generation	95

Table		Page
6.4	Agronomic characters of Thai rice TGMS lines	97
6.5	Average seed set percentage of TGMS lines compared with their parents	
	when planted under temperatures lower than 24 °C and higher	
	than 26 °C	98

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

List of Figures

Figur	e	Page
2.1	Schematic drawing of the PCR cycle	22
3.1	(a) Fertile pollens (blue color) compared with (b) Sterile pollens	
	(pale color) after staining with 1% KI ₂ solution	40
4.1	(a) sterile pollen (pale color) compared to (b) fertile pollen (blue color)	
	after staining with 1% KI ₂ solution	52
5.1	SSR primers showing different polymorphisms between parents, labeled	
	lane 5 and lane 21 belonged to T29s and KDML 105 variety, respectively	ly 71
5.2	Testing of primers for analyzing polymorphisms between sterile	
	progenies (S) and fertile progenies (F) of F_1 , F_2 and parental lines	73
5.3	Testing of primers for analyzing polymorphisms between sterile	
	progenies (S) and fertile progeny (F) for F_1 , F_2 and parental lines	73
5.4	Bands of OPAC-10 primer	75
5.5	Genetic map base on www.grammene.org followed Boonjaroen (2008)	76
5.6	SSCP primers screening for polymorphisms test among parents	
	and TGMS lines	77
5.7	Os02g12300 primer screening for polymorphism test between	
	individual fertile plants and individual sterile plants in F ₂ population	
	compared to their respective parents	78

Figure		Page
5.8	Os02g12370 primer screening for polymorphism test between	
	individual fertile plants and individual sterile plants in F ₂ population	
	compared to their respective parents	80
5.9	Os02g12370 primer screening for polymorphism test between	
	random individual fertile plants and individual sterile plants in F_2	
	population compared to with their respective parents	81
6.1	Plant height of T29s, KDML 105, F_1 , BC_1F_1 , BC_2F_1 , BC_3F_1 and BC_4F_1	
	populations	88
6.2	Plant height of T29s, KDML 105, F ₂ , BC ₁ F ₂ , BC ₂ F ₂ , BC ₃ F ₂ and	
	BC ₄ F ₂ populations	89
6.3	Average tillers per plant of F_1 , BC_1F_1 , BC_2F_1 , BC_3F_1 and BC_4F_1	
	populations	90
6.4	Average tillers per plant of F_2 , BC_1F_2 , BC_2F_2 , BC_3F_2 and BC_4F_2	
	populations	90
6.5	Three KDML105 TGMS lines which showed differences in agronomic	
	characters when grown under low temperature(below 24 °C),(a) KDML	.105
	TGMS-1(b) KDML 105 TGMS-2(c) and KDML 105 TGMS-3	98