Table of Content

Acknowledgement	iii
Abstract (English)	v
Abstract (Thai)	xi
List of Tables	xxiv
List of Figures	xxxii
Introduction	1
Chapter 1 Literature review	4
1.1 Manganese in soil	4
1.2 Manganese uptake and translocation in the rice plant	7
1.2.1 Short distance transport	7
1.2.2 Long distance transport	10
1.2.2.1 Xylem transport	10
1.2.2.2 Phloem transport	11
1.2.3 Mobility in the phloem	12
1.2.4 Transport between the xylem and phloem	13
1.2.5 Manganese remobilization	14
Copyright [©] b Seed germination g Mai University	sit4y
A lig Vegetative stage reserv	e ¹⁴ d
Reproductive stage	15
1.3 Manganese deficiency	16
1.3.1 Function of manganese in plant	16

	Photosynthesis and oxygen evolution	16
	Manganese containing enzymes	17
	Manganese dependent or activated enzymes	17
0	Proteins, Carbohydrates and lipids	19
	Cell division and extension	20
	1.3.2 Response by rice plant to low manganese in soil	20
1.4 Nu	atrient efficiency	22
1.5 Ge	notypic variation of manganese deficiency	23
5 3 1.6 Ge	netics of Mn efficiency	25
Chapter 2 Genot	ypic variation in Mn efficiency in Thai rice genotypes	27
2.1 Int	roduction	27
2.2 Ma	aterials and Methods	29
	2.2.1 Experiment 2.2.1 Genotypic variation among	29
	improved Thai rice varieties	
	2.2.2 Experiment 2.2.2 Genotypic variation among upland	31
	rice from calcareous soil area in northern Thailand	
ลขสทรม	Sub experiment 1 Variation between upland rice	31
Copyright [©]	genotypes and seed lots with the same name	sity
All ri	<u>Sub experiment 2</u> Characterization in seed morphology between and within some of upland rice genotypes	3 ² C
	Sub experiment 3 Responses of 3 upland rice genotypes to	32
	Mn levels	

2.2.3 Statistic analysis	36	
2.3 Results		
2.3.1 Experiment 2.2.1 Genotypic variation among	37	
improved Thai rice varieties		
2.3.2 Experiment 2.2.2 Genotypic variation among upland	51	
rice from calcareous soil area in northern Thailand		
Sub experiment <u>1</u> Variation between upland rice	51	
genotypes and seed lots with the same name		
Sub experiment 2 Characterization in seed morphology	60	
between and within some of upland rice genotypes		
Sub experiment 3 Responses of upland rice genotype to	63	
Mn levels		
2.4 Discussion	76	
Chapter 3 Manganese acquisition in Mn efficient and inefficient rice	80	
genotypes		
3.1 Introduction	80	
adam 3.2 Materials and Methods and allo allo allo	82	
Copyright 3.2.1 Experiment 3.2.1 Manganese acquisition of rice in	82	
Sub experiment 1 The influence of a Mn efficient genotype	e d	
Mn nutrition of a Mn inefficient plants growing nearby		
Sub experiment 2 Ability to use different forms of Mn in	83	

	Mn efficient and Mn inefficient genotypes	
	3.2.2 Experiment 3.2.2 Manganese acquisition of rice in	84
	solution culture	
0	Sub experiment 1 Comparing the responses of rice to	84
	manganese deficiency with and without aeration of the	
	nutrient solution	
G	Sub experiment 2 Acidification and reduction power of	85
	root exudate from Mn efficient and inefficient rice	
583	genotypes	
	3.2.3 Statistic analysis	86
3.3 Res	sults	87
	3.3.1 Experiment 3.3.1 Manganese acquisition of rice in	87
1 C	sand culture	
	Sub experiment 1 The influence of a Mn efficient genotype	87
	Mn nutrition of a Mn inefficient plants growing nearby	
S	Sub experiment 2 Ability to use different forms of Mn in	106
ลขสทรม	Mn efficient and Mn inefficient genotypes	11
Copyright [©]	3.3.2 Experiment 3.3.2 Manganese acquisition of rice in	119
Allri	solution culture S reserve	• C
	Sub experiment 1 Comparing the responses of rice to	119
	manganese deficiency with and without aeration of the	
	nutrient solution	

	<u>Sub experiment 2</u> Acidification and reduction power of	123
	root exudate from Mn efficient and inefficient rice	
	genotypes 3.4 Discussion	130
Chapter 4	Response to external manganese levels in Mn efficient and	134
	inefficient rice genotypes	
G	4.1 Introduction	134
	4.2 Materials and Methods	136
503	4.3 Results	138
	4.4 Discussion	155
Chapter 5	Manganese utilization in Mn efficient and inefficient rice	157
E	genotypes	
	5.1 Introduction	157
	5.2 Materials and Methods	159
	5.2.1 Experiment 5.2.1 Genotypic differences in the	159
	production and partitioning of carbohydrates	
ลขสท	between root and shoot of rice grown under Mn	hIJ
Copyrig	ht ^C deficiency hiang Mai University	sity
AII	5.2.2 Experiment 5.2.2 Genotypic differences in the producing of grain yield of rice grown under Mn	161
	deficiency	

5.2.3 Statistic analysis

	5.3 Results	163
	5.3.1 Experiment 5.3.1 Genotypic differences in the	163
	production and partitioning of carbohydrates	
	between root and shoot of rice grown under Mn	
	deficiency	
	5.3.2 Experiment 5.3.2 Genotypic differences in the	175
G	producing of grain yield of rice grown under Mn deficiency	
-See	5.4 Discussion	187
Chapter 6	General Discussion	190
	6.1 Genotypic variation in Mn efficiency in rice	190
E	6.2 Physiological response to Mn deficiency in Mn-efficient and	192
	inefficient rice genotypes	
	Acquisition efficiency	193
	Uptake efficiency	194
0 0	Utilization efficiency	194
ลขสทอ	6.3 General conclusion	195
Copyrig	6.4 Further research chiang Mai Univers	196
References	rights reserve	197
Curriculum	vitae	216

LIST OF TABLES

Table		Page
1.1	Characteristic differences in mobility of mineral nutrients in the phloem	13
2.1	The composition of nutrient solution for rice grown in solution culture	30
	(modified from Yoshida et al., 1976).	
2.2	Seed samples from Pang-Ma-Pha district, Mae Hong Son province in	34
	year 2005.	
2.3	The composition of nutrient solution for rice grown in solution culture	35
	(modified by Insalud, 2006).	
2.4	Mn concentration in YEB (mg Mn g ⁻¹) of five rice genotypes grown in	44
	sand culture with two levels of Mn at 8 weeks after transplanting.	
2.5	Mn concentration in shoot (mg Mn g ⁻¹) of five rice genotypes grown in	45
	sand culture with two levels of Mn at 8 weeks after transplanting.	
2.6	Mn concentration in root (mg Mn g ⁻¹) of five rice genotypes grown in	46
	sand culture with two levels of Mn at 8 weeks after transplanting.	
2.7	Mn content in shoot (mg Mn plant ⁻¹) of five rice genotypes grown in sand	47
a 0a	culture with two levels of Mn at 8 weeks after transplanting.	nIJ
C 2.8 V	Mn content in root (mg Mn plant ⁻¹) of five rice genotypes grown in sand	S 48
AII	culture at 8 weeks after transplanting.	e d
2.9	Mn content in whole plant (mg Mn plant ⁻¹) of five rice genotypes grown	49
	in sand culture with two levels of Mn at 8 weeks after transplanting.	
2.10	YEB-1 chlorophyll content of 11 seed accessions and 2 rice local checks	54

(KDML105 and PSL1) at 30 days after transplanting (DAT) in Mn₀.

- 2.11 YEB-1 chlorophyll content of 11 seed accessions and 2 rice local checks 55
 (KDML105 and PSL1) at 60 days after transplanting (DAT) in Mn₀.
- 2.12 Number of leaves of 11 seed accessions and 2 rice local checks 56 (KDML105 and PSL1) at 30 days after transplanting (DAT) in Mn₀.
- 2.13 Number of leaves of 11 seed accessions and 2 rice local checks 57 (KDML105 and PSL1) at 60 days after transplanting (DAT) in Mn₀.
- 2.14 Number of tillers of 11 seed accessions and 2 rice local checks 58 (KDML105 and PSL1) at 30 days after transplanting (DAT) in Mn₀.
- 2.15 Number of tillers of 11 seed accessions and 2 rice local checks 59 (KDML105 and PSL1) at 60 days after transplanting (DAT) in Mn₀.
- 2.16 Seed characters and Shannon's Index of 3 upland rice genotypes. 61
- 2.17 Grain length, width, thickness and weight between and within 3 upland 62 rice genotypes.
- 2.18 YEB-1 chlorophyll content (SPAD unit) of 4 upland rice and 2 rice local 66 checks (KDML105 and PSL1) grown in solution culture at 30 days after transplanting.
- 2.19 Concentration in YEB (mg Mn kg⁻¹) of 4 upland rice and 2 rice local 70 checks (KDML105 and PSL1) grown in solution culture at 30 days after transplanting.
 - 2.20 Concentration in shoot (mg Mn kg⁻¹) of 4 upland rice and 2 rice local 71 checks (KDML105 and PSL1) grown in solution culture at 30 days after

transplanting.

- 2.21 Concentration in root (mg Mn kg⁻¹) of 4 upland rice and 2 rice local 72 checks (KDML105 and PSL1) grown in solution culture at 30 days after transplanting.
- 2.22 Content in shoot (mg Mn plant⁻¹) of 4 upland rice and 2 rice local checks 73
 (KDML105 and PSL1) grown in solution culture at 30 days after transplanting.
- 2.23 Content in root (mg Mn plant⁻¹) of 4 upland rice and 2 rice local checks 74
 (KDML105 and PSL1) grown in solution culture at 30 days after transplanting.
- 3.1 Shoot dry weight (g plant⁻¹) of two rice genotypes grown together in pairs 96 in the same pot and separately in sand culture at 4 and 8 weeks after transplanting.
- 3.2 Root dry weight (g plant⁻¹) of two rice genotypes grown together in pairs 97 in the same pot and separately in sand culture at 4 and 8 weeks after transplanting.

Mn concentration in YEB (mg Mn kg⁻¹) of two rice genotypes grown 99 together in pairs in the same pot and separately in sand culture at 4 and 8 weeks after transplanting.

- 3.4
- 4 Mn concentration in shoot (mg Mn kg⁻¹) of two rice genotypes grown 100 together in pairs in the same pot and separately in sand culture at 4 and 8 weeks after transplanting.

- 3.5 Mn concentration in root (mg Mn kg⁻¹) of two rice genotypes grown 101 together in pairs in the same pot and separately in sand culture at 4 and 8 weeks after transplanting.
- 3.6 Mn content in shoot (mg Mn plant⁻¹) of two rice genotypes grown 102 together in pairs in the same pot and separately in sand culture at 4 and 8 weeks after transplanting.
- 3.7 Mn content in root (mg Mn plant⁻¹) of two rice genotypes grown together 103 in pairs in the same pot and separately in sand culture at 4 and 8 weeks after transplanting.
- 3.8 Mn content in whole plant (mg Mn plant⁻¹) of two rice genotypes grown 104 together in pairs in the same pot and separately in sand culture at 4 and 8 weeks after transplanting.
- 3.9 Response to Mn (II) and Mn (IV) of YEB-1 chlorophyll content (SPAD 108 unit) in two rice genotypes grown at 30 days after transplanting.
- 3.10 Response to Mn (II) and Mn (IV) of number of leaves (plant⁻¹) in two 109 rice genotypes grown at 30 days after transplanting.
- 3.11
 Response to Mn (II) and Mn (IV) of number of tillers (plant⁻¹) in two rice
 110

 genotypes grown at 30 days after transplanting.
 110
 - 3.12 Response to Mn(II) and Mn (IV) of shoot dry weight (g plant⁻¹) in two 111 rice genotypes grown at 30 days after transplanting.
 - 3.13 Responded to Mn (II) and Mn (IV) of root dry weight (g plant⁻¹) in two 112 rice genotypes grown at 30 day after transplanting.

- 3.14 Response to Mn (II) and Mn (IV) of Mn concentration in YEB (mg Mn 113 Kg⁻¹) in two rice genotypes grown at 30 days after transplanting.
- 3.15 Response to Mn (II) and Mn (IV) of shoot Mn concentration (mg Mn 114 Kg⁻¹) in two rice genotypes grown at 30 days after transplanting.
- 3.16 Response to Mn (II) and Mn (IV) of root Mn concentration (mg Mn Kg⁻¹) 115 in two rice genotypes grown at 30 days after transplanting.
- 3.17 Response to Mn(II) and Mn (IV) of shoot Mn content (mg Mn plant⁻¹) in 116 two rice genotypes grown at 30 days after transplanting.
- 3.18 Response to Mn (II) and Mn (IV) of root Mn content (mg Mn plant⁻¹) in 117 two rice genotypes grown at 30 days after transplanting.
- 3.19 Response to Mn (II) and Mn (IV) of Mn uptake efficiency (mg Mn g⁻¹ 118 root DW) in two rice genotypes grown at 30 days after transplanting.
- 3.20 Response to Mn deficiency of root length (cm) of KDML105 and PSL1 121 grown in nutrient solution with and without oxygen supply(+O₂ and O₂) at 15 and 30 day after transplanting.
- 3.21 Response to Mn deficiency of shoot length (cm) of KDML105 and PSL1 122 grown in nutrient solution with and without oxygen supply(+O₂ and – O₂) at 15 and 30 days after transplanting.
 - 3.22 Response to Mn of YEB-1 chlorophyll content (SPAD unit) of two rice 125 genotypes grown at 2 4 weeks after transplanting.
 - 3.23 Response to Mn of number of leaves (plant⁻¹) of two rice genotypes 126 grown at 2 -4 weeks after transplanting.

- 3.24 Response to Mn of number of tillers (plant⁻¹) of two rice genotypes 127 grown at 2 -4 weeks after transplanting.
- 3.25 Response to Mn of number of root exudate by reduce pH in rhizosphere 129 solution of two rice genotypes grown at 4 weeks after transplanting.
- 4.1 Response to Mn levels of YEB-1 chlorophyll content (SPAD unit) at 30 142 and 60 days after transplanting.
- 4.2 Response to Mn of number of leaves (plant⁻¹) at 30 and 60 days after 143 transplanting.
- 4.3 Response to Mn of number of tillers (plant⁻¹) at 30 and 60 days after 144 transplanting.
- 4.4 Response to Mn of shoot dry weight (g plant⁻¹) at 30 and 60 days after 145 transplanting.
- 4.5 Response to Mn of root dry weight (g plant⁻¹) at 30 and 60 days after 146 transplanting.
- 4.6 Response to Mn of YEB Mn concentration (mg Mn kg⁻¹) at 30 and 60 147 days after transplanting.

4.7 Response to Mn of shoot Mn concentration (mg Mn kg⁻¹) at 30 and 60 148 days after transplanting.

- 4.8 Response to Mn of root Mn concentration (mg Mn kg⁻¹) at 30 and 60 149 days after transplanting.
- 4.9 Response to Mn of shoot Mn content (mg Mn plant⁻¹) at 30 and 60 days 150 after transplanting.

- 4.10 Response to Mn of root Mn content (mg Mn plant⁻¹) at 30 and 60 days 151 after transplanting.
- 4.11 Response to Mn of whole plant Mn content (mg Mn plant⁻¹) at 30 and 60 152 days after transplanting.
- 4.12 Response to Mn of Mn uptake efficiency (mg Mn g⁻¹ root dry weight) at 153
 30 and 60 days after transplanting.
- 5.1 Response to Mn of YEB-1 chlorophyll content (SPAD unit) and relative 166 chlorophyll content in YEB-1 at 15 and 30 days after transplanting.
- 5.2 Response to Mn of number of leaves (plant⁻¹) and relative number of 167 leaves at 15 and 30 days after transplanting.
- 5.3 Response to Mn of number of tillers (plant⁻¹) and relative number of 168 tillers at 15 and 30 days after transplanting.
- 5.4 Response to Mn of shoot and root dry weight (g plant⁻¹) at 30 days after 169 transplanting.
- 5.5 Response to Mn of relative shoot and root dry weight at 30 days after 170 transplanting.

5.6 Response to Mn of TNC concentration (mg glucose equivalent g⁻¹ dry 171 weight) at 30 days after transplanting.

- 5.7 Response to Mn of relative TNC concentration at 30 days after 172 transplanting.
- Response to Mn Root / Shoot ratio of TNC concentration at 30 days after 173 transplanting.

- 5.9 Response to Mn of YEB-1 chlorophyll content (SPAD unit) and relative 178YEB-1 chlorophyll content at 30, 60 days after transplanting and maturity.
- 5.10 Response to Mn of number of leaves (plant⁻¹) and relative number of 179 leaves at 30, 60 days after transplanting and maturity.
- 5.11 Response to Mn of number of tillers (plant⁻¹) and relative number of 180 tillers at 30, 60 day after transplanting and maturity.
- 5.12 Response to Mn of shoot, root and total dry weight (g plant⁻¹) at maturity. 181
 5.13 Response to Mn of grain yield and relative grain yield (g plant⁻¹) at 182
- maturity.
- 5.14 Response to Mn of Mn concentration in YEB, shoot and root (mg Mn 183 kg⁻¹) at maturity.
- 5.15 Response to Mn of Mn concentration in seed (mg Mn kg⁻¹) at maturity. 184
- 5.16 Response to Mn of Mn content in YEB, shoot and root (mg Mn plant⁻¹) at 185 maturity.

5.17 Response to Mn of Mn content in seed (mg Mn plant⁻¹) at maturity. 186 5.18 Response to Mn of Mn uptake efficiency (mg Mn g⁻¹ root DW) at 186 maturity. **Chiang Mai University rights reserved**

LIST OF FIGURES

Figure	e	Page
1.1	Mn oxidation-reduction cycle in the soil (Dion and Mann, 1946).	6
1.2	Model for root responses to iron deficiency in graminaceous species;	22
	Strategy II: (E) enhanced synthesis and release of phytosiderophores;	
	(TR) translocator for Fe (III) phytosiderophores in the plasma membrane:	
	structure of the phytosiderophore muginic acid and its corresponding Fe	
	(III) chelate. (Marschner, 1995)	
2.1	Relative number of leaves (number of leaves in $Mn_0/Mn_{0.5}$) of five rice	40
	genotypes.	
2.2	Relative number of tillers (number of tillers in $Mn_0/Mn_{0.5}$) of five rice	40
	genotypes.	
2.3	Relative YEB chlorophyll content (YEB chlorophyll in $Mn_0/Mn_{0.5}$) of	41
	five rice genotypes.	
2.4	Relative shoot dry weight (dry weight in $Mn_0/Mn_{0.5}$) of five rice	42
8.18	genotypes at 8 week after transplanting.	
	Relative root dry weight (dry weight in $Mn_0/Mn_{0.5}$) of five rice genotypes	42
Сору	at 8 week after transplanting. hiang Mai University	sity
2.6	Relative total dry weight (dry weight in $Mn_0/Mn_{0.5}$) of five rice genotypes at 8 week after transplanting.	e 43
2.7	Relative Mn uptake efficiency (Mn uptake efficiency in $Mn_0/Mn_{0.5}$) at	50
2.7	Relative Mn uptake efficiency (Mn uptake efficiency in $Mn_0/Mn_{0.5}$) at	50

- 2.8 Relative Mn uptake (whole plant content in $Mn_0/Mn_{0.5}$) at Mn_0 compared 50 with $Mn_{0.5}$ in sand culture at 8 weeks after transplanting.
- 2.9 Relative chlorophyll content in YEB-1 of 4 upland rice genotypes and 2
 67 local rice checks (KDML105 and PSL1) grown in solution culture at 30 days after transplanting.
- 2.10 Relative shoot dry weight of 4 upland rice and 2 rice local checks 68(KDML105 and PSL1) grown in solution culture at 30 days after transplanting.
- 2.11 Relative root dry weight of 4 upland rice and 2 rice local checks 68 (KDML105 and PSL1) grown in solution culture at 30 days after transplanting.
- 2.12 Relative total dry weight of 4 upland rice and 2 rice local checks 69 (KDML105 and PSL1) grown in solution culture at 30 days after transplanting.
- 2.13 Relative Mn uptake efficiency of 4 upland rice and 2 rice local checks 75 (KDML105 and PSL1) grown in solution culture at 30 days after transplanting.
- 3.1 Model of PSL1 and KDML105 were grown together in pairs in the same 83 pot and separately.
 - 3.2 Relative $Mn_0 / Mn_{0.5}$ of chlorophyll content in YEB-1 at 1 8 weeks after 93 transplanting. (Mn₀ = 0 ppm and Mn_{0.5} = 0.5 ppm)
 - 3.3 Relative Mn_0 / $Mn_{0.5}$ of number of tillers at 1 8 weeks after 94

transplanting.

- 3.4 Relative Mn_0 / $Mn_{0.5}$ of number of leaves at 1 8 weeks after 95 transplanting.
- 3.5 Relative total dry weight of two rice genotypes at Mn₀ compared with 98
 Mn_{0.5} in sand culture at (A) 4 weeks and (B) 8 weeks after transplanting.
- 3.6 Relative Mn uptake efficiency at Mn_0 compared with $Mn_{0.5}$ of rice 105 genotypes grown in sand culture at (A) 4 weeks and (B) 8 weeks after transplanting.
- 3.7 Response to Mn deficiency of chlorophyll content in YEB-1 (SPAD unit) 120 of KDML105 and PSL1 grown in nutrient solution with and without oxygen supply(+O₂ and -O₂) at 15 days after transplanting.
- 3.8 Response to Mn deficiency of chlorophyll content in YEB-1 (SPAD unit) 120
 of KDML105 and PSL1 grown in nutrient solution with and without
 oxygen supply(+O₂ and -O₂) at 30 days after transplanting.
- 3.9 Response to Mn deficient of root exudate by reduction of MnIV-oxide 128 applied on filter paper of two rice genotypes grown at 4 weeks after transplanting.
- 3.10 Response to Mn sufficient of root exudate by reduction of MnIV-oxide 128 applied on filter paper of two rice genotypes grown at 4 weeks after transplanting.
 - 4.1 Relative Mn uptake efficiency ((Mn uptake efficiency in Mn_0 , 154 $Mn_{0.25}/Mn_{0.5}$) x 100) of KDML105 and PSL1 in 3 levels of Mn (0, 0.25

and 0.5 ppm; Mn_0 , $Mn_{0.25}$ and $Mn_{0.5}$, respectively) at 30 days after transplanting (a) and 60 day after transplanting (b). At Mn0.5=100%.

- 5.1 Relative dry weight and TNC concentration in shoot and root at 30 days 174 after transplanting.
- 5.2 Diagrammatic representation of Mn response modified from Gerloff 189 (1977).

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved