CHAPTER 4

GENETICS OF SILICON UPTAKE IN UPLAND RICE UNDER DROUGHT CONDITION

4.1 Introduction

Despite the arguments on the essential role of Si, it has been known for almost one century that Si exerts beneficial effects on the growth of plants. Several beneficial effects of Si have been reported, including increased photosynthetic activity, increased insect and disease resistance, reduced mineral toxicity, improvement of nutrient imbalance and enhanced drought and frost tolerance (Ohyama, 1985; Ahmad et al., 1992; Agarie et al., 1998; Ma and Takahashi, 1991, 2001, 2002; Ando et al., 2002; Ma, 2004). But the inheritance of Si uptake has been reported to be smaller than that of the other traits. Savant et al. (1997) reported that genetic plays an important role in Si uptake by rice plant. Genotypes differ in their Si contents and respond differently to applied Si (Garrity et al., 1984; Majumder et al., 1985; Winslow, 1992; Deren et al., 1992). Genetic study of Si uptake in rice by using diallel cross involving seven genotypes indicated that maximum profile of this element was in leaf, followed by stem and root. Regarding its uptake, both additive and non-additive genes were involved while the former was higher in magnitude, indicating the scope of individual selection in segregating generations. Heterotic effect was also evident (Majumder et al., 1985). Dai et al. (2005) performed quantitative trait loci (QTL) analysis to study the inheritance of Si content in rice hull (HUS), flag leaf (FLS) and stem (STS). A total of 10 QTL showing significant additive effects and 14 significant additive-by-additive (AA) interactions were detected. General contributions to the phenotype variance due to additive effects and AA effects were 29.3 and 18.6% for HUS, 14.8 and 13.6% for FLS, and 8.6 and 28.6% for STS, respectively. This indicates that gene actions at both the one- and

two-locus levels play an important role to genetically control Si content in rice. In addition, it was shown that the detection of QTLs at the one-locus level, as well as magnitude and direction of the additive effect, might be influenced greatly by digenic interactions involving loci linked to the given QTL.

Ma *et al.* (2006) described the Low Si rice 1 (*Lsi1*) gene, which controls Si accumulation in rice, a typical Si-accumulating plant. This gene belongs to the aquaporin family and is constitutively expressed in the roots. *Lsi1* is localized on the plasma membrane of the distal side of both exodermis and endodermis cells, where casparian strips are located. Suppression of *Lsi1* expression resulted in reduced Si uptake. Furthermore, expression of *Lsi1* in *Xenopus* oocytes showed transport activity for Si only. The identification of a Si transporter provides both an insight into the Si uptake system in plants, and a new strategy for producing crops with high resistance to multiple stresses by genetic modification of the root's Si uptake capacity. Vinod *et al.* (2006) reported that two candidate genes, *EXP 15* and *EXP 13*, were found to be associated with root number and Si content in the rice stem, respectively, under both well-watered and low-moisture stress conditions. However, the research of quantitative genetics on Si uptake under drought condition had not been reported at present. Therefore, the objective of this study was to determine the genetics of Si uptake for quantitative traits of upland rice grown under drought condition.

4.2 Materials and methods

Referring to Chapter 2, the experiment was designed by using high-siliconuptake-ability genotype and low-silicon-uptake-ability genotype at tillering stage. Hao (high Si content in leaf blade), IRAT191 (low Si content in leaf blade), SMGC90002-4 (high Si content in stem), and SMG9037-2-1-1-2 (low Si content in stem) were crossed (Cross 1 = Hao x IRAT191, and Cross 2 = SMGC90002-4 x SMG9037-2-1-1-2) in order to develop F₁, F₂, BC₁ and BC₂ generations. Data were obtained on the parents (P₁ and P₂) and on their progenies (F₁, F₂, BC₁ and BC₂). Family size was deliberately varied with the kind of family. It was set at 20, 40, 200 and 100 plants for the parent, F₁, F2 and backcross generation, respectively. All plants were individually randomized at the time of planting and seedling of each population was planted into 25-cm-diameter pots containing sandy loam soil. The experiment was conducted at Rajamangala University of Technology Lanna – Nan on July 2006. Prior to planting, soil was amended with $(NH_4)_2SO_4$ (0.5 g kg⁻¹ soil), KCl (0.2 g kg⁻¹ soil), and KH₂PO₄ (0.2 g kg⁻¹ soil). The rice plants were established by watering with drip irrigation. For drought condition manipulation, water was withheld to impose stress at tillering stage for 15 days, starting 31 days after the emergence of seedling. After finishing of drought stage treatment, water was applied regularly until reaching physiological grain-maturing stage.

Data collection

1) Si content in rice tissues: Si content in the young fully-expanded leaf blade of rice was analyzed at tillering stage (45 days after emergence). And Si content in leaf blade, stem, root, and hulls of rice plants were analyzed at harvesting. Rice plant samples were taken from each plant of all families and determined for the Si content by the autoclave-induced digestion method (Elliott and Snyder, 1991).

2) Rice grain yield and its components from each plant of all families were recorded.

4.3 Genetics analysis

In this study, the variation of each trait is obtained from the six basic generations, there are the parents (P_1 and P_2), F_1 hybrid, F_2 hybrid and the backcross (BC₁ and BC₂) generation while the parent generations are the true breeding lines. Mather and Jinks (1971, 1977), Kearsey and Pooni (1996) described that the six basic generations can be divided into two distinct groups with respect to their variances. The first group includes those generations that consist of genetically-identical individuals, such as the P_1 , P_2 and F_1 families. Because individuals within these generations do not show any genetic differences, they are referred to as the non-segregating generations. The second group includes the F_2 , BC₁ and BC₂ generations which contain a mixture of genotypes resulting from segregation, random assortment and recombination of alleles at those loci for which P_1 and P_2 differ and the F_1 is heterozygous. Hence, they are referred to as the segregating generations.

Because in the individuals within the P_1 , P_2 and F_1 families are genetically identical, any variation between them cannot be genetical and it is conventional to refer to such variation as the environmental variation within families (E_W). This type of variation exists even between individuals which may be exposed to virtually identical environments and it is a major component of the total variation for quantitative traits.

For variation in the segregating generations, the individuals in the segregating generations will be subjected not only to non-genetical, but also to genetical variation (V_G). The expected genetic variance of an F₂ population at a single segregating locus be V_G. From statistical theory, $V_G = \sum f_i(g_i - mean)^2 / (\sum f_i - 1)$ where f_i is the frequency of the ith genotype, and gi is its genetic value. While this formula applies to small samples, it can be simplified to when $V_G = \sum f_i g_i^2 - (\sum f_i g_i)^2$ where F_2 population are dealt as a whole. The f_i now represents the proportion of individuals having the ith genotype and not the frequency, i.e. $\sum f_i = 1$ (not n). Apply this formula to gene pair A-a which P1 and P2 difference, the F2 will consist of AA, Aa and aa genotypes which will be present with the proportions of $\frac{1}{4}$: $\frac{1}{2}$: $\frac{1}{4}$ respectively. The two parameters measuring the differences between the genotype may then be defined as d, measuring the departure of each homozygote from the mid-point, and h, measuring the departure of each heterozygote from it. The contribution of A-a genotypes to the deviation of the F_2 mean from the mid-parent, will be $\frac{1}{2}\ h_a.$ The contribution of AA, Aa and aa genotypes to the sum of squares of deviation from midparent will be:

 $\frac{1}{4} d_a^2 + \frac{1}{2} h_a^2 + \frac{1}{4} (-d_a)^2 = \frac{1}{2} d_a^2 + \frac{1}{2} h_a^2$

And its contribution to the sum of squares from the F_2 mean then becomes:

F₂ Variance =
$$\frac{1}{2} d_a^2 + \frac{1}{2} h_a^2 - (\frac{1}{2} h_a)^2 = \frac{1}{2} d_a^2 + \frac{1}{4} h_a^2$$

Assuming that non-allelic genes make independent contribution to it, the genetical variance produced by all genes segregating in F_2 will be the sum of their individual

contribution. It thus becomes $\frac{1}{2} S(d^2) + \frac{1}{4} S(h^2) = \frac{1}{2} D + \frac{1}{4} H$ where we define $D = S(d^2)$ and $H = S(h^2)$. Thus, the genetical variance comprises two parts, the D component, depending on the d's which measure the departure of homozygotes from the mid-parent and H component which depends on the h's measuring the departures of heterozygotes from the mid-parent. The D variation can in principle be fixed by the selection of homozygous lines and so may be referred to as fixable variation. The H variation depends on the properties of heterozygotes and is therefore unfixable. The total phenotypic variation of an F₂ also includes the environental variation, therefore,

$$V_{F2} = \frac{1}{2} D + \frac{1}{4} H + E_w$$

In respect of A-a are back-crossed to the larger parent, P_1 , will comprise $\frac{1}{2}$ AA and $\frac{1}{2}$ Aa individuals and that to the smaller parent, P_2 , $\frac{1}{2}$ Aa and $\frac{1}{2}$ aa individuals. Then as, $\overline{B}C1 = \frac{1}{2} d_a + \frac{1}{2} h_a$ and $\overline{B}C2 = \frac{1}{2} d_a - \frac{1}{2} h_a$. The contributions of A-a to the variances of the two backcrosses will thus be,

$$\frac{1}{2} d_a^2 + \frac{1}{2} h_a^2 - [\frac{1}{2} (d_a + h_a)]^2 = \frac{1}{4} (d_a - h_a)^2$$
 to V_{BC1}

and similarly, $\frac{1}{4} (d_a + h_a)^2$ to V_{BC2}. Then assuming independence of the contributions of the different genes, the genetical portions of the backcross variance become $\frac{1}{4} S(d + h)^2$ and $\frac{1}{4} S(d - h)^2$ respectively. Clearly d and h do not make independent contributions and F = S(dh) might introduce a further components of variation, to give the expressions

$$V_{BC1} = \frac{1}{4} D - \frac{1}{2} F + \frac{1}{4} H + E_w$$
 and $V_{BC2} = \frac{1}{4} D + \frac{1}{2} F + \frac{1}{4} H + E_w$

E_w representing the environmental variation as mentioned earlier.

Mather and Jinks procedures (1971, 1977), the data in this study were analyzed by using statistical procedures to elucidate the genetic component of the six basic generations; variances in terms of D, H, F and E_w as follows.

$$E_{W} = \frac{1}{4} (V_{P1} + V_{P2} + 2V_{F1})$$

$$D = 4 V_{F2} - 2 (V_{BC1} + V_{BC2})$$

$$H = 4 (V_{BC1} + V_{BC2} - V_{F2} - E_{W})$$

$$F = V_{BC2} - V_{BC1}$$

From these estimates, the heritability (h^2) was calculated to the broad and narrow-sense heritability of Si uptake for yield and yield component traits in upland rice under drought condition as follows (Kearsey, 1993):

a. Broad-sense heritability (h_b^2) may be estimated from the formula:

$$h_b^2 = (\frac{1}{2} D + \frac{1}{4} H)/(\frac{1}{2} D + \frac{1}{4} H + E_W)$$

b. Narrow-sense heritability (h_n^2) may be estimated from the formula:

$$h_n^2 = (\frac{1}{2} D)/(\frac{1}{2} D + \frac{1}{4} H + E_W)$$

Calculated mean of parents and variance of F_1 , F_2 families are used for estimating the number of genes. A formula proposed for estimating the number of genes involved in the inheritance of Si uptake for yield and their components in upland rice under drought conditions:

$$N = (\bar{X}_{P1} - \bar{X}_{P2})^2 / 8 (V_{F2} - V_{F1})$$

In the formula, \overline{X}_{P1} and \overline{X}_{P2} are the means of pure-line parent, and V_{F2} and V_{F1} are the variance of F_2 and F_1 generations, respectively (Poehlman and Sleper, 1995). However, this method of estimating number of genes is based on the assumptions that the genes have equal effects, no dominance or epistasis is present, and that no two loci are in the same chromosome (hence no linkage). The estimating number of genes are ceased if the data do not follow the assumptions.

However, Kearsey and Pooni (1996) described the step for data analysis as follow. Providing that the experiment is adequately randomized, the individuals of P_1 , P_2 and F_1 are deemed to be exposed to the same range of environmental conditions.

Their variances should thus provide independent estimates of E_W which are not expected to differ from each other. Therefore, the estimate of E_W will be meaningful only when the variances of generations are homogeneous. The homogeneity among P_1 , P_2 and F_1 variances could be checked by using an F-test, which were applied using the ratio of the largest to the smallest of the three variances (P_1 , P_2 and F_1 variances). If the F-test is not shown to differ significantly among the parental and F_1 variances and so the pooled estimate of E_W will be accepted for using to estimating genetic components. Alternatively, when the variances of P_1 , P_2 and F_1 are shown to be heterogeneous, V_{E1} , V_{E2} and V_{E3} are replaced with three separate parameters to account for differences between them. Now, there are six parameters in the model and their contributions to the variances will be:

$$s_{P1}^{2} = E_{W1}$$

$$s_{P2}^{2} = E_{W2}$$

$$s_{F1}^{2} = E_{W3}$$

$$s_{F2}^{2} = \frac{1}{2} D + \frac{1}{4} H + \frac{1}{4} E_{W1} + \frac{1}{2} E_{W2} + \frac{1}{4} E_{W3}$$

$$s_{BC1}^{2} = \frac{1}{4} D - \frac{1}{2} F + \frac{1}{4} H + \frac{1}{2} E_{W1} + \frac{1}{2} E_{W3}$$

$$s_{BC2}^{2} = \frac{1}{4} D + \frac{1}{2} F + \frac{1}{4} H + \frac{1}{2} E_{W2} + \frac{1}{2} E_{W3}$$

 Table 4.1 Expectations of the within-family variances in terms of the additive dominance genetic and the additive environmental components of variation (Kearsey, 1993).

Generation	K	Para	meters	BUILD
	Ew	Chiang	H	F
P ₁ / 6	1.0	Cinang		inversity
P ₂	2 ^{1.0}			
F_1	1.0			
F ₂	1.0	1/2	1/4	
BC_1	1.0	1/4	1/4	- 1/2
BC ₂	1.0	1/4	1/4	1/2

For estimating of genetic components, there are thus six observed statistics from the population of six families which must estimate four parameters, D, H, F and E_W (Table 4.1). The expectations of the within-family variances in terms of the additive dominance genetic and the additive environmental components of variation are shown in Table 4.1. The weighted least squares procedure (WLS) is applied to determine the parameters. With variances, no such replicate variances are available, and hence, we do not have empirical weights. The theoretical variance of an observed variance (s²) is equal to $2(\epsilon s^2)^2/df$, but the expected variance, ϵs^2 , is not known. Hayman (1960) solved this problem by using iteration the parameter estimates to calculate expected variances which will approximate to the true values. These are then used to calculate new weights for a second iteration. This process is repeated through successive iterations until the test statistic, χ^2 , reaches a minimum.

4.4 Results

4.4.1 The variances of the six basic generations

Results of study of the variances of the six basic generations are presented in Tables 4.2 to 4.11, the six basic generations (P_1 , P_2 , F_1 , F_2 , BC_1 and BC_2) of all traits showed that there were phenotypic variations among the individual plants within families in both crosses. The variances of F_2 , BC_1 and BC_2 generations of all traits in both crosses were higher than P_1 , P_2 and F_1 generations, since parents and F_1 are consisted the genetically-identical individuals. In addition, the variances of P_1 , P_2 and F_1 generations of all traits in each cross also were homogeneous when checked with $s^2P_1 = s^2P_2 = s^2F_1$ by using the ratio of the largest to smallest of the three variances or F-test.

Furthermore, the variances of F_1 in both crosses for all traits were significantly smaller than the variances of F_2 and backcross generations, as well, the average variances between BC₁ and BC₂ were smaller than the variance of F_2 generation. When comparing variances between BC₁ and BC₂, it was found that variances of BC₂ for all traits in both crosses were higher than BC₁' variance; except the Si content in hull trait of cross 1 (Table 4.6).

	Within-family variance			
Generation	Cross 1	Cross 2		
	(Hao x IRAT191)	(SMGC90002-4 x SMG9037-2-1-1-2)		
P_1 o	58.770	59.149		
P ₂	65.055	54.481		
F_1	50.240	69.174		
F ₂	146.821**	118.461** 93.424*		
BC_1	106.506**			
BC ₂	146.785**	97.931**		
F-test [†] for checked				
$s^2P_1 = s^2P_2 = s^2F_1$	>0.05	>0.05		
(P)				
The pooled estimate of E _w	54.699	61.743		
Remark : [†] the ratio of the value of proba		three variances $(s^2P_1, s^2P_2 \text{ and } s^2F_1)$; P = the hat the parental and F ₁ variances did or did er.		

Table 4.2 Within-family variances for the six basic generations for Si content in leaf
 blade at tillering stage.

** and * = significant at the 0.01 and 0.05 probability levels by F-test to determine

whether or not the F_2 and the backcross variances are significantly larger than E_W .

Table 4.3 Within-family variances for the six basic generations for Si content in leaf blade at harvesting stage.

	T .				
		Within-family variance			
Generation	Cross 1	Cross 2			
	(Hao x IRAT191)	(SMGC90002-4 x SMG9037-2-1-1-2)			
P ₁	19.335	58.387			
P_2	14.694	66.550			
	29.575	50.070			
F_2	44.902**	146.845**			
BC1	33.060*	88.830*			
BC ₂	37.394**	157.273**			
F-test [†] for checked	by Cillan	5 mar Oniversity			
$s^{2}P_{1} = s^{2}P_{2} = s^{2}F_{1}$	>0.05	>0.05			
$(P) \qquad (P) $	nts	reservea			
The pooled estimate of	19.598	54 675			
Ew	19.398	54.675			

Remark: [†] the ratio of the largest to smallest of three variances (s^2P_1 , s^2P_2 and s^2F_1); P = the value of probability which showed that the parental and F₁ variances did or did not differ significantly from each other.

** and * = significant at the 0.01 and 0.05 probability levels by F-test to determine whether or not the F₂ and the backcross variances are significantly larger than E_W.

	Within-family variance			
Generation	Cross 1	Cross 2 (SMGC90002-4 x SMG9037-2-1-1-2)		
	(Hao x IRAT191)			
P_1 o	56.668	22.511		
P ₂	54.255	28.156		
F_1	57.634	24.612		
F ₂	138.522**	103.161** 64.774** 93.994**		
BC_1	94.855*			
BC_2	131.824**			
F-test [†] for checked				
$s^2P_1 = s^2P_2 = s^2F_1$	>0.05	>0.05		
(P)				
The pooled estimate of E_W	56.492	24.661		

Table 4.4 Within-family variances for the six basic generations for Si content in stem at harvesting stage.

not differ significantly from each other. ** and * = significant at the 0.01 and 0.05 probability levels by F-test to determine not differ significantly from each other.

whether or not the F₂ and the backcross variances are significantly larger than E_w.

Table 4.5 Within-family variances for the six basic generations for Si content in root at harvesting stage.

-		JINW	Within-family variance			
	Generation	Cross 1	Cross 2			
_		(Hao x IRAT191)	(SMGC90002-4 x SMG9037-2-1-1-2)			
	P ₁	64.204	83.204			
	P_2	82.007	72.781			
	F_1	62.625	68.538			
	F ₂	154.446**	156.493**			
	BC_1	102.790*	106.022*			
	BC ₂	180.187**	150.651**			
	F-test [†] for checked	/	0 /			
	$s^2P_1 = s^2P_2 = s^2F_1$	>0.05	>0.05			
	(P)					
-	The pooled estimate of E _W	66.195	72.329			
_		1	$\frac{1}{1}$ $\frac{1}$			

Remark: [†] the ratio of the largest to smallest of three variances (s^2P_1 , s^2P_2 and s^2F_1); P = the value of probability which showed that the parental and F1 variances did or did not differ significantly from each other.

** and * = significant at the 0.01 and 0.05 probability levels by F-test to determine whether or not the F₂ and the backcross variances are significantly larger than E_w.

	W	ithin-family variance			
Generation	Cross 1	Cross 2			
	(Hao x IRAT191)	(SMGC90002-4 x SMG9037-2-1-1-2)			
P_1 O	53.011	43.409			
P_2	62.232	23.253			
F_1	72.625	48.324			
F ₂	160.687**	112.045**			
BC_1	143.469**	79.145**			
BC ₂	130.272**	106.580**			
F-test [†] for checked		>0.05			
$s^{2}P_{1} = s^{2}P_{2} = s^{2}F_{1}$	>0.05				
(P)					
The pooled estimate of E _w	62.993	33.297			
Remark : [†] the ratio of the largest to smallest of three variances $(s^2P_1, s^2P_2 \text{ and } s^2F_1)$; P = the value of probability which showed that the parental and F ₁ variances did or did not differ significantly from each other.					
	** = significant at the 0.01 probability levels by F-test to determine whether or not				
the F_2 and the backcross variances are significantly larger than E_W .					

Table 4.6 Within-family variances for the six basic generations for Si content in hull at harvesting stage.

 Table 4.7 Within-family variances for the six basic generations for grain yield.

	W	Within-family variance			
Generation	Cross 1	Cross 2			
	(Hao x IRAT191)	(SMGC90002-4 x SMG9037-2-1-1-2)			
P ₁	2.582	1.990			
P_2	4.046	1.339			
F ₁	2.326	1.955			
F ₂	7.385**	6.440**			
BC_1	5.420**	3.501**			
BC ₂	6.380**	5.704**			
F-test [†] for checked	by Chian	g Mai University			
$s^{2}P_{1} = s^{2}P_{2} = s^{2}F_{1}$	>0.05	>0.05			
(P)					
The pooled estimate of E _w	2.569	1.707			

Remark: [†] the ratio of the largest to smallest of three variances $(s^2P_1, s^2P_2 \text{ and } s^2F_1)$; P = the value of probability which showed that the parental and F_1 variances did or did not differ significantly from each other.

** = significant at the 0.01 probability level by F-test to determine whether or not the F_2 and the backcross variances are significantly larger than E_W .

	Within-family variance			
Generation	Cross 1	Cross 2		
	(Hao x IRAT191)	(SMGC90002-4 x SMG9037-2-1-1-2)		
P_1 o	0.621	0.471		
P ₂	1.157	0.379		
F_1	0.681	0.438 1.254** 0.879** 1.071**		
F ₂	1.694**			
BC_1	1.088**			
BC_2	1.854**			
F-test [†] for checked				
$s^{2}P_{1} = s^{2}P_{2} = s^{2}F_{1}$	>0.05	>0.05		
(P)				
The pooled estimate of	0 707	0.426		
Ew	0.707	0.426		

Table 4.8Within-family variances for the six basic generations for number of
panicles per plant.

value of probability which showed that the parental and F_1 variances did or did not differ significantly from each other.

** = significant at the 0.01 probability level by F-test to determine whether or not the F_2 and the backcross variances are significantly larger than E_W , respectively.

Table 4.9Within-family variances for the six basic generations for number of
spikelets per panicles.

		Within-family variance			
Generation	Cross 1	Cross 2			
	(Hao x IRAT191)	(SMGC90002-4 x SMG9037-2-1-1-2)			
P ₁	349.747	342.285			
P_2	573.293	275.883			
F_1	404.594	292.452			
F ₂	1102.466**	896.927**			
BC_1	602.567*	660.108**			
BC ₂	966.572**	808.155**			
F-test [†] for checked	/	0			
$s^2P_1 = s^2P_2 = s^2F_1$	>0.05	>0.05			
(P)					
The pooled estimate of	407.300	297.000			
E _W		2 2 2			

Remark: [†] the ratio of the largest to smallest of three variances $(s^2P_1, s^2P_2 \text{ and } s^2F_1)$; P = the value of probability which showed that the parental and F₁ variances did or did not differ significantly from each other.

** and * = significant at the 0.01 and 0.05 probability levels by F-test to determine whether or not the F_2 and the backcross variances are significantly larger than E_W .

	Within-family variance				
Generation	Cross 1	Cross 2			
	(Hao x IRAT191)	(SMGC90002-4 x SMG9037-2-1-1-2)			
P ₁	239.390	84.816			
P_2 O	219.550	87.083			
F ₁	349.760	85.161			
F_2	759.748**	201.000**			
BC ₁	417.790*	150.870**			
BC_2	687.400**	193.100**			
F-test [†] for checked	一下の				
$s^2P_1 = s^2P_2 = s^2F_1$	>0.05	>0.05			
(P)					
The pooled estimate of	265 500	95 522			
Ew	265.589	85.532			
Remark : [†] the ratio of the largest to smallest of three variances (s ² P ₁ , s ² P ₂ and s ² F ₁); P = the value of probability which showed that the parental and F ₁ variances did or did not differ significantly from each other. ** and * = significant at the 0.01 and 0.05 probability levels by F-test to determine					
whether or not the F_2 and the backcross variances are significantly larger than					

Table 4.10 Within-family variances for the six basic generations for spikelet fertility.

Table 4.11 Within-family variances for the six basic generations for 100-grain
weight.

	A INT	Within-family variance			
ration	Cross 1	Cross 1 Cross 2		,	
	(Hao x IRAT191)	(SMGC90002	2-4 x SMG9037-2-1-	1-2)	
P ₁	0.233		0.232		
\mathbf{P}_2	0.256		0.292		
F_1	0.245		0.319		
F_2	0.650**		0.999**		
C_1	0.491**		0.540**		
C_2	0.531**		0.885**		
r checked		0			
$P_2 = s^2 F_1$	>0.05		>0.05		
P) 5					
	0.244		0.281		
	eration P_1 P_2 F_1 F_2 SC_1 SC_2 or checked $^2P_2 = s^2F_1$ P_1 P_2 P	Cross 1 (Hao x IRAT191) P_1 0.233 P_2 0.256 F_1 0.245 F_2 0.650** OC_1 0.491** OC_2 0.531** Or checked 2 P_2 >0.05 P) 0.244	Cross 1 (Hao x IRAT191) (SMGC90002) P_1 0.233 0.256 P_2 0.256 0.245 F_1 0.245 0.650** OC_1 0.491** 0.531** Or checked $2^2P_2 = s^2F_1$ >0.05 P) 0.244 >0.244	crationCross 1Cross 2(Hao x IRAT191)(SMGC90002-4 x SMG9037-2-1-P10.2330.232P20.2560.292F10.2450.319F20.650**0.999**OC10.491**0.540**OC20.531**0.885**Or checked $P_2 = s^2 F_1$ >0.05P)0.2440.281	

Remark: [†] the ratio of the largest to smallest of three variances $(s^2P_1, s^2P_2 \text{ and } s^2F_1)$; P = the value of probability which showed that the parental and F₁ variances did or did not differ significantly from each other.

** = significant at the 0.01 probability level by F-test to determine whether or not the F_2 and the backcross variances are significantly larger than E_W .

4.4.2 Estimation of genetical components

From the results in Tables 4.2 to 4.11, variances of P_1 , P_2 , and F_1 generations in both crosses for all traits were homogeneous, therefore, the pooled estimate of environmental variances (E_W) were accepted for using in the estimation of variance components. When the variances of F_2 and the backcross generations were compared with E_w by F-test, it showed that the variances of F_2 and the backcross generations were significantly larger than E_w (Tables 4.2 to 4.11), indicating that genetic variation existed in these segregating generations which were derived from crossing between the parents.

The variances of the six basic generations were used to estimate variance components by the weighted least squares procedure for fitting the perfect model which consisted of four parameters, D, H, F and E_W. The chi-square test for fitting the perfect model did not show significant difference for each trait in both crosses. Results of the estimation of variance components are presented in Tables 4.12 to 4.21. However, some parameters such as H and F in the model did not show significant difference from zero by the T-test. The data were then proceeded to the fitting model in order to obtain the best statistical model by using different combinations of parameters. The most appropriate model for each trait in crosses required at least two parameters, D and E_W, which both of them were fitting to the chi-square test (Tables 4.22 to 4.31). F was particularly found in some traits in both crosses. In cross 1 (Hao x IRAT191), F was found for Si content in root (Table 4.25), number of panicles per plant (Table 4.28), number of spikelets per panicle (Table 4.29), and spikelet fertility (Table 4.30), and in cross 2 (SMGC90002-4 x SMG9037-2-1-1-2), F was found for Si content leaf blade (Table 4.23), grain yield (Table 4.27) and 100-grain weight (Table 4.31).

4.4.3 Heritability

By using the data obtained from the perfect fit values of D, H, F and E_W in Tables 4.12 to 4.21, the heritability was estimated in both types of heritability, broad-sense heritability (h_b^2) (Table 4.32) and narrow-sense heritability (h_n^2) (Table

4.33). The estimations of h_b^2 and h_n^2 in crosses 1 were different from cross 2 for all traits. The average h_b^2 of Si content in rice tissues in both crosses were 0.56, 0.60, 0.68, 0.56 and 0.66 for the young leaf blade, mature leaf blade, stem, root and hull, respectively (Table 4.32) while the average h_n^2 of Si content in rice tissues in both crosses were 0.33, 0.38, 0.41, 0.27 and 0.32 for the young leaf blade, mature leaf blade, mature leaf blade, stem, root and hull, respectively (Table 4.33).

For yield and yield components, the average h_b^2 in both crosses were 0.70, 0.62, 0.65, 0.61 and 0.67 for grain yield, number of panicles per plant, number of spikelets per panicle, spikelet fertility and 100-grain weight, respectively (Table 4.32) while the average h_n^2 in both crosses were 0.49, 0.35, 0.47, 0.47 and 0.38 for grain yield, number of panicles per plant, number of spikelets per panicle, spikelet fertility and 100-grain weight, respectively (Table 4.32).

However, when h_{b}^{2} and h_{n}^{2} estimated from the most appropriate fit values, the estimated of h_{b}^{2} and h_{n}^{2} in crosses 1 showed difference from cross 2 for all traits. But the h_{n}^{2} of each trait in both crosses were similar to h_{b}^{2} . The average h_{b}^{2} and h_{n}^{2} of Si content in rice tissues in both crosses were 0.56, 0.60, 0.68, 0.56 and 0.66 for the young leaf blade, mature leaf blade, stem, root and hull, respectively (Tables 4.34 and 4.35) while the average h_{b}^{2} and h_{n}^{2} for yield and yield components in both crosses were 0.67, 0.62, 0.65, 0.61 and 0.67 for grain yield, number of panicles per plant, number of spikelets per panicle, spikelet fertility and 100-grain weight, respectively.

4.4.4 The number of genes

In this study, the formula $N = (\bar{X}_{P1} - \bar{X}_{P2})^2 / 8 (V_{F2} - V_{F1})$ cannot estimate the number of genes for controlling the expression of Si content in rice tissues, yield and yield components because this method did not meet the requirement of the assumptions that the genes control have equal effects, either dominance or epistasis is not present, and no linkage among loci in the same chromosome. In all traits, it was found that the different variances between F₂ and F₁ were very high (Tables 4.36 and 4.37), when compared with the means of parent and reduced the number of genes as it should be correct number (N < 0.5 for all traits; Tables 4.36 to 4.38). In addition, the data in Tables 4.12 to 4.21 supported the variation of Si content in rice tissues, yield and yield components which were influenced by D, H, F and E_W variances in the initial weight in an iterative process. So that, the number of genes control for studied traits did not follow the assumption of this method.

 Table 4.12
 Results of estimated variance components by the variances of six basic generations to fit the perfect model for Si content in leaf blade at tillering stage.

6.	Estimated variance components					
Parameter	Cross 1		Cross 2			
	(Hao x II	(Hao x IRAT191)		(SMGC90002-4 x SMG9037-2-1-1-2)		
D	80.	702	91.	134		
CHS	207	.086	44.	605		
F	40.2	279	4.5	507		
Ew	E _w 54.699** √(H/D) 1.602		61.74	43**		
$\sqrt{(H/D)}$			0.6	599		
SD	78.	256	63.130			
S _H	123.	123.915		98.890		
$\mathbf{S}_{\mathbf{F}}$	25.768		19.238			
\mathbf{s}_{Ew}	8.8	888	10.005			
Generation	Within-family variance		Within-fam	ily variance		
Generation	Observed	Expected	Observed	Expected		
P ₁	58.770	54.699	59.149	61.743		
P ₂	65.055	54.699	54.481	61.743		
F ₁	50.240	54.699	69.174	61.743		
F_2	146.821	146.821	118.461	118.461		
BC ₁	106.506	106.506	93.424	93.424		
BC_2	146.785	146.785	97.931	97.931		
$\chi^{2}_{[2]}$	0.4	40	0.4	12		
Р	0.75	-0.90	0.75	-0.90		

Remark: ** = significant at the 0.01 probability level by t-test to determine whether or not the value of D, H, F or E_W are significantly different from zero.

Table 4.13 Results of estimated variance components by the variances of six basicgenerations to fit the perfect model for Si content in leaf blade atharvesting stage.

		Estimated	variance components	
Parameter	Cro	ss 1	Cro	ss 2
	(Hao x II	RAT191)	(SMGC90002-4 x s	SMG9037-2-1-1-2)
D	38.	700	95.	174
Н	23.	817	178	.332
F	4.3	34	68.4	43*
$E_{\mathbf{W}}$	19.5	98**	54.6	75**
√ (H/D)	0.784		1.3	69
SD	22.924		78.	128
$\mathbf{S}_{\mathbf{H}}$	36.110		123.580	
SF	7.092		25.671	
\mathbf{s}_{Ew}	3.3	02	8.8	388
Generation	Within-family variance		Within-fam	ily variance
Generation	Observed	Expected	Observed	Expected
P ₁	19.335	19.598	58.387	54.675
P ₂	14.694	19.598	66.550	54.675
F_1	29.575	19.598	50.070	54.675
F_2	44.902	44.902	146.845	146.845
BC ₁	33.060	33.060	88.830	88.830
C_{BC_2}	37.394	37.394	157.273	157.273
$\chi^2_{[2]}$	3 .2	.79	o Mai 0.5	⁰⁶ vorsity
Р	0.10-	-0.25	0.75	-0.90

Table 4.14 Results of estimated variance components by the variances of six basic generations to fit the perfect model for Si content in stem at harvesting stage.

		Estimated	variance components	
Parameter	Cro	ss 1	Cro	ss 2
	(Hao x II	RAT191)	(SMGC90002-4 x	SMG9037-2-1-1-2
D	100	.730	95.	108
Н	126	.658	123	.784
F	36.	969	29.	220
$E_{\mathbf{W}}$	56.4	92**	24.6	61**
$\sqrt{(H/D)}$	1.121		1.1	41
SD	72.229		52.	577
\mathbf{s}_{H}	113.745		78.597	
\mathbf{s}_{F}	23.087		16.	223
\mathbf{s}_{Ew}	9.1	10	3.9	987
Generation	Within-family variance		Within-fam	ily variance
Ocheration	Observed	Expected	Observed	Expected
P ₁	56.668	56.492	22.511	24.661
P ₂	54.255	56.492	28.156	24.661
F_1	57.634	56.492	24.612	24.661
F_2	138.522	138.522	103.161	103.161
BC ₁	94.855	94.855	64.774	64.774
BC_2	131.824	131.824	93.994	93.994
χ^{2} [2]	- 0.0	24	σ Mai I ^{0.2}	233 versity
Р	0.95	-0.99	0.75	-0.90

Table 4.15 Results of estimated variance components by the variances of six basic generations to fit the perfect model for Si content in root at harvesting stage.

		Estimated	variance components	
Parameter	Cro	ss 1	Cro	ss 2
	(Hao x II	RAT191)	(SMGC90002-4 x s	SMG9037-2-1-1-2)
D	51.	831	112	.626
H	249	.344	111	405
F	77.3	97**	44.	629
E_{W}	66.1	95**	72.3	29**
$\sqrt{(H/D)}$	2.193		0.9	95
SD	85.516		81.	731
s _H	139.954		130.744	
\mathbf{s}_{F}	29.479		26.192	
\mathbf{s}_{Ew}	10.	724	11.705	
Generation	Within-family variance		Within-fam	ily variance
Generation	Observed	Expected	Observed	Expected
P ₁	64.204	66.195	83.204	72.329
P ₂	82.007	66.195	72.781	72.329
F_1	62.625	66.195	68.538	72.329
F_2	154.446	154.446	156.493	156.493
BC ₁	102.790	102.790	106.022	106.022
BC_2	180.187	180.187	150.651	150.651
χ ² [2]	0.4	26	σ Mai I ^{0.2}	²² versitv
Р	0.75	-0.90	0.75-	0.90

Remark: ** = significant at the 0.01 probability level by t-test to determine whether or not the value of D, H, F or E_W are significantly different from zero.

Table 4.16 Results of estimated variance components by the variances of six basic generations to fit the perfect model for Si content in hull at harvesting stage.

		Estimated	variance components	
Parameter	Cro	ss 1	Cro	ss 2
	(Hao x II	RAT191)	(SMGC90002-4 x S	SMG9037-2-1-1-2
D	95.:	266	76.	730
Н	200	.245	161.	533
F	-13.	197	27.4	435
E_{W}	62.9	93**	33.2	97**
√ (H/D)	1.450		1.4	51
SD	84.776		58.	676
$\mathbf{S}_{\mathbf{H}}$	134.048		90.730	
SF	27.550		18.868	
\mathbf{s}_{Ew}	10.	247	5.683	
Generation	Within-family variance		Within-fam	ily variance
Generation	Observed	Expected	Observed	Expected
P ₁	53.011	62.993	43.409	33.297
P ₂	62.232	62.993	23.253	33.297
F_1	72.625	62.993	48.324	33.297
F_2	160.687	160.687	112.045	112.045
BC ₁	143.469	143.469	79.145	79.145
BC_2	130.272	130.272	106.580	106.580
χ^2 [2]	0.6	81 hian	σ Mai I ^{4.1}	74 _{vercity}
Р	0.50-	-0.75	0.10-	0.25

		Estimated	variance components		
Parameter	Cro	Cross 1		Cross 2	
	(Hao x II	RAT191)	(SMGC90002-4 x	SMG9037-2-1-1-2	
D	5.9	40	7.3	50*	
Н	7.3	84	4.2	234	
F	0.9	60	2.2	03*	
Ew	2.56	9**	1.70)7**	
$\sqrt{(H/D)}$	1.1	1.115		759	
SD	3.799		3.2	208	
SH	5.854		4.733		
\mathbf{S}_{F}	1.190		0.951		
\mathbf{s}_{Ew}	0.4	22	0.279		
Generation	Within-family variance		Within-family variance		
Generation	Observed	Expected	Observed	Expected	
P ₁	2.582	2.569	1.990	1.707	
P ₂	4.046	2.569	1.339	1.707	
\mathbf{F}_1	2.326	2.569	1.955	1.707	
F_2	7.385	7.385	6.440	6.440	
BC_1	5.420	5.420	3.501	3.501	
BC ₂	6.380	6.380	5.704	5.704	
χ ² [2]	1.4	79		223	
P	0.25	0.50	0.50	-0.75	

Table 4.17 Results of estimated variance components by the variances of six basicgenerations to fit the perfect model for grain yield.

		Estimated	variance components	
Parameter	Cross 1		Cross 2	
	(Hao x II	RAT191)	(SMGC90002-4 x	SMG9037-2-1-1-2
D	0.8	392	7 41.1	116
Н	2.1	65	1.0	079
F	0.7	766	0.1	192
Ew	0.70	0.707**		26**
√ (H/D)	1.5	1.558		983
SD	0.914		0.6	539
SH	1.474		0.974	
\mathbf{S}_{F}	0.306		0.197	
\mathbf{s}_{Ew}	0.1	.17	0.069	
Generation	Within-family variance		Within-family variance	
Generation	Observed	Expected	Observed	Expected
P ₁	0.621	0.707	0.471	0.426
P ₂	1.157	0.707	0.379	0.426
F_1	0.681	0.707	0.438	0.426
F_2	1.694	1.694	1.254	1.254
BC_1	1.088	1.088	0.879	0.879
BC ₂	1.854	1.854	1.071	1.071
χ ² [2]	1.6	648	0.2	247
P	0.25	-0.50	0.75	-0.90

Table 4.18 Results of estimated variance components by the variances of six basicgenerations to fit the perfect model for number of panicles per plant.

Remark: ** = significant at the 0.01 probability level by t-test to determine whether or not the value of D, H, F or E_W are significantly different from zero.

	Estimated variance components				
Parameter	Cro	ss 1	Cro	ss 2	
	(Hao x II	RAT191)	(SMGC90002-4 x s	SMG9037-2-1-1-2	
D	1271	.600*	651	.200	
Н	237	.400	1097	2.400	
F	364.	000*	148	.000	
Ew	407.3	800**	297.0	00**	
$\sqrt{(H/D)}$	0.4	132	1.2	.98	
SD	547.978		466	219	
SH	828.064		719	719.861	
\mathbf{s}_{F}	161.895		148.324		
s _{Ew}	66.	558	47.958		
Generation	Within-family variance		Within-family variance		
	Observed	Expected	Observed	Expected	
P1	349.747	407.300	342.285	297.000	
P ₂	573.293	407.300	275.883	297.000	
F_1	404.594	407.300	292.452	297.000	
F_2	1102.466	1102.450	896.927	896.950	
BC_1	602.567	602.550	660.108	660.150	
BC ₂	966.572	966.550	808.155	808.150	
χ ² [2]	1.055		0.2	27	
nv ^P ioh	0.50	-0.75	0.075	-0.90	
Remark: ** an	1	1 1 0 01	and 0.05 probability	11- 1 4 44 4.	

Table 4.19 Results of estimated variance components by the variances of six basic generations to fit the perfect model for number of spikelets per panicle.

		Estimated	variance components	
Parameter	Cross 1		Cross 2	
	(Hao x II	RAT191)	(SMGC90002-4 x	SMG9037-2-1-1-2
D	828.	588*	116	.058
Н	319	.449	229	.755
F	269.	613*	42.	230
Ew	265.5	89**	85.5	32**
$\sqrt{(H/D)}$	0.6	0.621		107
SD	380.933		106	.532
SH	576.724		170.141	
$\mathbf{S}_{\mathbf{F}}$	114.324		34.828	
\mathbf{s}_{Ew}	43.	704	13.784	
Generation	Within-family variance		Within-fam	ily variance
Generation	Observed	Expected	Observed	Expected
P ₁	239.390	265.589	84.816	85.532
P ₂	219.550	265.589	87.083	85.532
F_1	349.760	265.589	85.161	85.532
F_2	759.748	759.745	201.000	201.000
BC_1	417.790	417.792	150.870	150.870
BC ₂	687.400	687.405	193.100	193.100
χ ² [2]	1.6	61		004
Р	0.25	-0.50	0.95	-0.99

Table 4.20 Results of estimated variance components by the variances of six basicgenerations to fit the perfect model for spikelet fertility.

	Estimated variance components				
Parameter	Cross 1		Cro	ss 2	
	(Hao x II	RAT191)	(SMGC90002-4 x	SMG9037-2-1-1-2	
D	0.556		1.1	46*	
Н	0.5	511	0.5	581	
F	0.0)40	0.3	345	
Ew	0.24	4**	0.28	31**	
$\sqrt{(H/D)}$	0.9	959	0.7	/12	
SD	0.332		0.4	97	
SH	0.512		0.7	736	
\mathbf{s}_{F}	0.103		0.147		
\mathbf{s}_{Ew}	0.040		0.046		
Generation	Within-family variance		Within-family variance		
Generation	Observed	Expected	Observed	Expected	
P ₁	0.233	0.244	0.232	0.281	
P ₂	0.256	0.244	0.292	0.281	
F_1	0.245	0.244	0.319	0.281	
F_2	0.650	0.650	0.999	0.999	
BC_1	0.491	0.491	0.540	0.540	
BC ₂	0.531	0.531	0.885	0.885	
χ ² [2]	0.042		0.714		
P	0.95	-0.99	o Mai 0.50	-0.75	

Table 4.21 Results of estimated variance components by the variances of six basic generations to fit the perfect model for 100-grain weight.

Table 4.22 Results of estimated variance components by the variances of six basicgenerations to fit the most appropriate model for Si content in leaf bladeat tillering stage.

		Estimated	variance components		
Parameter	Cross 1		Cro	ss 2	
	(Hao x II	RAT191)	(SMGC90002-4 x S	SMG9037-2-1-1-2	
D	196.3	50**	114.9	004**	
Н		一道へ		-93	
F		<u> </u>			
E_{W}	58.146**		63.5	36**	
SD	33.104		30.1	879	
SH				- 365	
\mathbf{S}_{F}	-				
\mathbf{s}_{Ew}	8.468		9.1	47	
Generation	Within-family variance		Within-fam	ily variance	
Generation	Observed	Expected	Observed	Expected	
P ₁	58.770	58.146	59.149	63.536	
P ₂	65.055	58.146	54.481	63.536	
F_1	50.240	58.146	69.174	63.536	
F_2	146.821	156.321	118.461	120.989	
BC_1	106.506	107.233	93.424	92.263	
BC ₂	146.785	107.233	97.931	92.263	
and	$\chi^{2}_{[4]} =$	4.604	$\chi^{2}_{[4]} =$	0.663	
	P = 0	25-0.50	P = 0	.95-0.99	

Table 4.23 Results of estimated variance components by the variances of six basicgenerations to fit the most appropriate model for Si content in leaf bladeat harvesting stage.

		Estimated	variance components		
Parameter	Cross 1		Cro	Cross 2	
	(Hao x II	RAT191)	(SMGC90002-4 x s	SMG9037-2-1-1-2	
D	51.8	66**	197.2	236**	
Н		「近く		3	
F		<u> </u>	52.5	49*	
E_{W}	20.330**		58.3	50**	
SD	10.970		33.	192	
SH				<u> </u>	
$\mathbf{S}_{\mathbf{F}}$	-		23.191		
\mathbf{s}_{Ew}	3.071		8.4	.97	
Generation	Within-family variance		Within-fam	ily variance	
Generation	Observed	Expected	Observed	Expected	
P ₁	19.335	20.330	58.387	58.350	
P ₂	14.694	20.330	66.550	58.350	
F_1	29.575	20.330	50.070	58.350	
F_2	44.902	46.263	146.845	156.968	
BC_1	33.060	33.297	88.830	81.384	
BC ₂	37.394	33.297	157.273	133.933	
and	$\chi^{2}_{[4]} =$	4.017	$\chi^{2}_{[3]} =$	2.588	
	P = 0	.25-0.50	P = 0	.25-0.50	

Table 4.24 Results of estimated variance components by the variances of six basicgenerations to fit the most appropriate model for Si content in stem atharvesting stage.

		Estimated	variance components	
Parameter	Cro	ss 1	Cro	ss 2
	(Hao x II	RAT191)	(SMGC90002-4 x s	SMG9037-2-1-1-2
D	169.8	59**	167.6	507**
Н		一道へ		-33
F		<u> </u>		- 2
E_{W}	58.681**		25.5	87**
SD	32.237		19.	934
SH	Charles ??			
\mathbf{s}_{F}	-			
\mathbf{s}_{Ew}	8.591		3.896	
Generation	Within-family variance		Within-fam	ily variance
Generation	Observed	Expected	Observed	Expected
P ₁	56.668	58.681	22.511	25.587
P ₂	54.255	58.681	28.156	25.587
F_1	57.634	58.681	24.612	25.587
F_2	138.522	143.611	103.161	109.390
BC_1	94.855	101.146	64.774	67.488
BC ₂	131.824	101.146	93.994	67.488
and	$\chi^{2}_{[4]} =$	3.115	$\chi^{2}_{[4]} =$	4.673
	P = 0	.50-0.75	P = 0	.25-0.50

Table 4.25 Results of estimated variance components by the variances of six basicgenerations to fit the most appropriate model for Si content in root at
harvesting stage.

		Estimated	variance components	
Parameter	Parameter Cross 1		Cross 2	
	(Hao x II	(Hao x IRAT191)		SMG9037-2-1-1-2
D	189.1	97**	171.1	.56**
H		一道へ		-93
F	54.8	67*		
E_{W}	72.0:	55**	74.0	93**
SD	36.	993	38.507	
SH		The Star	- 70,5	
\mathbf{S}_{F}	26.	635) -	
\mathbf{s}_{Ew}	10.2	10.213 10.854		854
Generation	Within-fam	ily variance	Within-family variance	
Generation	Observed	Expected	Observed	Expected
P ₁	64.204	72.055	83.204	74.093
P ₂	82.007	72.055	72.781	74.093
F_1	62.625	72.055	68.538	74.093
F_2	154.446	166.654	156.493	159.671
BC_1	102.790	91.921	106.022	116.882
BC ₂	180.187	146.788	150.651	116.882
and	$\chi^{2}_{[3]} =$	3.600	$\chi^{2}_{[4]} =$	3.293
	P = 0	25-0.50	P = 0	.50-0.75

Table 4.26 Results of estimated variance components by the variances of six basicgenerations to fit the most appropriate model for Si content in hull at
harvesting stage.

		Estimated	variance components	
Parameter	Cross 1		Cross 2	
	(Hao x II	RAT191)	(SMGC90002-4 x S	SMG9037-2-1-1-2
D	208.9	03**	170.0	066**
Н				-93
F		<u> </u>		- 2
$E_{\mathbf{W}}$	67.58	80**	35.4	59**
SD	37.042		23.	689
SH	9			500
\mathbf{S}_{F}	-	-		
\mathbf{s}_{Ew}	9.7	/52	5.491	
Generation	Within-fam	ily variance	Within-family variance	
Generation	Observed	Expected	Observed	Expected
P ₁	53.011	67.580	43.409	35.459
P ₂	62.232	67.580	23.253	35.459
F_1	72.625	67.580	48.324	35.459
F_2	160.687	172.032	112.045	120.492
BC_1	143.469	119.806	79.145	77.975
BC ₂	130.272	119.806	106.580	77.975
and	$\chi^{2}_{[4]} =$	3.044	$\chi^{2}_{[4]} =$	8.460
	$\mathbf{P} = 0$.50-0.75	P = 0	.05-0.10

	Estimated variance components				
Parameter	Cross 1		Cross 2		
	(Hao x II	RAT191)	(SMGC90002-4 x	SMG9037-2-1-1-2)	
D	10.2	26**	9.97	79**	
Н					
F		一道。	1.8	93*	
Ew	2.71	2**	1.76	66**	
SD	1.627 1.285		285		
S _H					
SF			0.886		
$\mathbf{s}_{\mathbf{E}\mathbf{w}}$	0.404		0.272		
Generation	Within-fam	ily variance	Within-family variance		
Generation	Observed	Expected	Observed	Expected	
P_1	2.582	2.712	1.990	1.766	
P ₂	4.046	2.712	1.339	1.766	
F_1	2.326	2.712	1.955	1.766	
F_2	7.385	7.825	6.440	6.755	
BC_1	5.420	5.269	3.501	3.314	
BC_2	6.380	5.269	5.704	5.207	
มสิทธิ	$\chi^{2}_{[4]} =$	3.488	$\chi^{2}_{[3]} =$	2.024	
	P = 0	.25-0.50	P = 0	.50-0.75	

Table 4.27 Results of estimated variance components by the variances of six basicgenerations to fit the most appropriate model for grain yield.

Table 4.28 Results of estimated variance components by the variances of six basicgenerations to fit the most appropriate model for number of panicles per
plant.

		Estimated	variance components		
Parameter	Cross 1		Cross 2		
	(Hao x II	(Hao x IRAT191)		SMG9037-2-1-1-2	
D	2.09	6**	1.74	4**	
Н		一道へ		-93	
F	0.5	85*			
E_{W}	0.76	51**	0.44	.5**	
SD	0.403		0.2	.72	
SH				- 305	
\mathbf{S}_{F}	0.279				
\mathbf{s}_{Ew}	0.110		0.0	0.066	
Generation	Within-family variance		Within-fam	Within-family variance	
Generation	Observed	Expected	Observed	Expected	
P ₁	0.621	0.761	0.471	0.445	
P ₂	1.157	0.761	0.379	0.445	
F_1	0.681	0.761	0.438	0.445	
F_2	1.694	1.809	1.254	1.318	
BC_1	1.088	0.993	0.879	0.881	
BC ₂	1.854	1.577	1.071	0.881	
and	$\chi^{2}_{[3]} =$	3.806	$\chi^{2}_{[4]} =$	2.131	
	P = 0	.25-0.50	P = 0	.50-0.75	

Table 4.29 Results of estimated variance components by the variances of six basicgenerations to fit the most appropriate model for number of spikelets per
panicle.

	Estimated variance components				
Parameter	eter Cross 1		Cross 2		
	(Hao x II	RAT191)	(SMGC90002-4 x s	SMG9037-2-1-1-2	
D	1411.	800**	1289.	700**	
Н		一派へ		-93	
F	348.	000*			
E_{W}	413.5	500**	314.9	000**	
SD	246	.838	193	.179	
SH			500		
\mathbf{s}_{F}	151	.993	-		
\mathbf{s}_{Ew}	63.032		46.	217	
Concretion	Within-family variance		Within-fam	ily variance	
Generation	Observed	Expected	Observed	Expected	
P ₁	349.747	413.500	342.285	314.900	
P ₂	573.293	413.500	275.883	314.900	
F_1	404.594	413.500	292.452	314.900	
F_2	1102.466	1119.400	896.927	959.750	
BC_1	602.567	592.450	660.108	637.325	
BC ₂	966.572	940.450	808.155	637.325	
and	$\chi^{2}_{[3]} =$	1.137	$\chi^{2}_{[4]} =$	3.125	
	P = 0	.75-0.90	P = 0	.50-0.75	

		Estimated variance components				
Parameter	Cross 1		Cross 2			
	(Hao x II	RAT191)	(SMGC90002-4 x	SMG9037-2-1-1-2)		
D	1018.	200**	242.6	573**		
Н			$ > \ $			
F	246.	500*		- 33		
Ew	272.9	000**	90.6	95**		
SD	52.874 47.718		718			
SH	- 6					
SF	33.	659	- 505			
\mathbf{s}_{Ew}	41.	689	13.012			
Generation	Within-family variance		Within-family variance			
Generation	Observed	Expected	Observed	Expected		
P ₁	239.390	272.900	84.816	90.695		
P ₂	219.550	272.900	87.083	90.695		
F_1	349.760	272.900	85.161	90.695		
F_2	759.748	782.000	201.000	212.031		
BC_1	417.790	404.200	150.870	151.363		
BC_2	687.400	650.700	193.100	151.363		
ງສີກອິ		1.968 .50-0.90		.50-0.75		

Table 4.30 Results of estimated variance components by the variances of six basicgenerations to fit the most appropriate model for spikelet fertility.

	Estimated variance components				
Parameter	Cross 1 (Hao x IRAT191)		Cross 2		
			(SMGC90002-4 x	SMG9037-2-1-1-2	
D	0.85	53**	1.50)5**	
Н					
F		一道。	0.3	02*	
Ew	0.25	6**	0.29	90**	
SD	0.146		0.2	202	
SH					
SF	0.137		137		
\mathbf{s}_{Ew}	0.0	037	0.045		
Generation	Within-family variance		Within-family variance		
Generation	Observed	Expected	Observed	Expected	
P ₁	0.233	0.256	0.232	0.290	
P ₂	0.256	0.256	0.292	0.290	
F_1	0.245	0.256	0.319	0.290	
F_2	0.650	0.683	0.999	1.042	
BC_1	0.491	0.469	0.540	0.515	
BC_2	0.531	0.469	0.885	0.817	
and	$\chi^{2}_{[4]} =$	1.147	$\chi^{2}_{[3]} =$	= 1.338	
	P = 0	.75-0.90	P = 0	.50-0.75	

Table 4.31 Results of estimated variance components by the variances of six basicgenerations to fit the most appropriate model for 100-grain weight.

Traits			
	Cross 1	Cross 2	Average
Si content in leaf blade at tillering stage	0.63	0.48	0.56
Si content in leaf blade at harvesting stage	0.56	0.63	0.60
Si content in stem at harvesting stage	0.59	0.76	0.68
Si content in root at harvesting stage	0.57	0.54	0.56
Si content in hull at harvesting stage	0.61	0.70	0.66
Grain yield	0.65	0.74	0.70
Number of panicles per plant	0.58	0.66	0.62
Number of spikelets per panicle	0.63	0.67	0.65
Spikelet fertility	0.65	0.57	0.61
100-grain weight	0.62	0.72	0.67

Table 4.32 The h_b^2 of Si content in rice tissues, yield and yield component traitscalculated from the expected value of parameter in the perfect model.

Table 4.33 The h_n^2 of Si content in rice tissues, yield and yield component traitscalculated from the expected value of parameter in the perfect model.

Traits	V P	h_n^2		
Turts	Cross 1	Cross 2	Average	
Si content in leaf blade at tillering stage	0.27	0.38	0.33	
Si content in leaf blade at harvesting stage	0.43	0.32	0.38	
Si content in stem at harvesting stage	0.36	0.46	0.41	
Si content in root at harvesting stage	0.17	0.36	0.27	
Si content in hull at harvesting stage	0.30	0.34	0.32	
Grain yield	0.40	0.57	0.49	
Number of panicles per plant	0.26	0.44	0.35	
Number of spikelets per panicle	0.58	0.36	0.47	
Spikelet fertility	0.55	0.38	0.47	
100-grain weight	0.43	0.32	0.38	

Table 4.34 The h_b^2 of Si content in rice tissues, yield and yield component traits
calculated from the expected value of parameter in the most
appropriate model.

Traits		h^2_b		
	Cross 1	Cross 2	Average	
Si content in leaf blade at tillering stage	0.63	0.47	0.55	
Si content in leaf blade at harvesting stage	0.56	0.63	0.60	
Si content in stem at harvesting stage	0.59	0.77	0.68	
Si content in root at harvesting stage	0.57	0.54	0.56	
Si content in hull at harvesting stage	0.61	0.71	0.66	
Grain yield	0.65	0.68	0.67	
Number of panicles per plant	0.58	0.66	0.62	
Number of spikelets per panicle	0.63	0.67	0.65	
Spikelet fertility	0.65	0.57	0.61	
100-grain weight	0.62	0.72	0.67	

Table 4.35 The h_n^2 of Si content in rice tissues, yield and yield component traits
calculated from the expected value of parameter in the most
appropriate model.

Traits		h^2 n		
Trans	Cross 1	Cross 2	Average	
Si content in leaf blade at tillering stage	0.63	0.47	0.55	
Si content in leaf blade at harvesting stage	0.56	0.63	0.60	
Si content in stem at harvesting stage	0.59	0.77	0.68	
Si content in root at harvesting stage	0.57	0.54	0.56	
Si content in hull at harvesting stage	0.61	0.71	0.66	
Grain yield	0.65	0.68	0.67	
Number of panicles per plant	0.58	0.66	0.62	
Number of spikelets per panicle	0.63	0.67	0.65	
Spikelet fertility	0.65	0.57	0.61	
100-grain weight	0.62	0.72	0.67	

Table 4.36	The number of genes (N) in crosses 1 (Hao x IRAT191) for controlling
	the expression of Si content in rice tissues, yield and yield components.

Traits 8 2 2	\overline{X}_{P1}	\overline{X}_{P2}	V _{F2}	V_{F1}	Ν
					(genes)
Si content in leaf blade at tillering stage (mg g ⁻¹)	52.9	36.6	146.82	50.24	0.34
Si content in leaf blade at harvesting stage (mg g ⁻¹)	52.0	46.1	44.90	29.58	0.28
Si content in stem at harvesting stage (mg g ⁻¹)	41.2	39.2	138.52	57.63	0.01
Si content in root at harvesting stage (mg g ⁻¹)	51.5	40.8	154.45	62.63	0.16
Si content in hull at harvesting stage (mg g ⁻¹)	19.7	26.9	160.69	72.63	0.07
Grain yield (g plant ⁻¹)	4.1	4.0	7.39	2.33	0.01
Number of panicles per plant (panicles plant ⁻¹)	3.1	3.0	1.69	0.68	0.01
Number of spikelets per panicle (spikelets panicle ⁻¹)	73.0	72.0	1,102.47	404.59	0.01
Spikelet fertility (%)	90.9	88.9	759.75	349.76	0.01
100-grain weight (g)	2.9	2.5	0.65	0.25	0.06
		_			

Table 4.37 The number of genes (N) in crosses 2 (SMGC90002-4 x SMG9037-2-1-1-2) for controlling the expression of Si content in rice tissues, yield and
yield components.

Traits	$\overline{\mathrm{X}}_{\mathrm{P1}}$	\overline{X}_{P2}	V _{F2}	V_{F1}	N (genes)
Si content in leaf blade at tillering stage (mg g ⁻¹)	54.3	51.5	118.46	69.17	0.02
Si content in leaf blade at harvesting stage (mg g ⁻¹)	25.8	40.1	146.85	50.07	0.26
Si content in stem at harvesting stage (mg g ⁻¹)	45.8	56.2	103.161	24.61	0.17
Si content in root at harvesting stage (mg g ⁻¹)	39.1	39.5	156.49	68.54	0.01
Si content in hull at harvesting stage (mg g ⁻¹)	31.6	22.8	112.05	48.32	0.15
Grain yield (g plant ⁻¹)	5.3	3.4	6.44	1.96	0.10
Number of panicles per plant (panicles plant ⁻¹)	3.0	2.5	1.25	0.44	0.04
Number of spikelets per panicle (spikelets panicle ⁻¹)	81.0	76.0	896.93	292.45	0.01
Spikelet fertility (%)	71.7	84.6	201.00	85.16	0.18
100-grain weight (g)	2.5	2.4	1.00	0.32	0.01

Table 4.38The average number of genes in both crosses for controlling the
expression of Si content in rice tissues, yield and yield components.

Traits 10191	Average number of genes
Traits E 160	(genes)
Si content in leaf blade at tillering stage	0.183
Si content in leaf blade at harvesting stage	0.271
Si content in stem at harvesting stage	0.090
Si content in root at harvesting stage	0.085
Si content in hull at harvesting stage	0.112
Grain yield	0.055
Number of panicles per plant	0.025
Number of spikelets per panicle	0.010
Spikelet fertility	0.095
100-grain weight	0.035

4.5 Discussion

The six basic generations can be divided into two distinct groups with respect to their variances. The first group includes those generations that consist of genetically-identical individuals, such as the P₁, P₂ and F₁ families because individuals within these generations do not show any genotypic difference and are referred to as non-segregating generations. So, any variation between them cannot be genetical and it is conventional to refer to such variation as the environmental variation within families. The second group includes the F₂ and back-cross generations (BC₁ and BC₂) which contain a mixture of genotypes resulting from segregation, random assortment and recombination of alleles at those loci for which P₁, P₂ differ and the F₁ is heterozygous. Hence, they are referred to as the segregating generations (Kearsey and Pooni, 1996).

In this study, the individuals of P₁, P₂ and F₁ families of all traits were exposed to the same range of environmental conditions in both crosses. There were no interactions between the micro-environmental and genotypic variations because the variances of the P₁, P₂ and F₁ generations were homogeneous. These results showed that the parental and F1 variances of all traits in both crosses did not differ significantly from each other, so the estimates of environmental variances were pooled together to obtain E_w of each trait in both crosses. When the variances of the F₂ and backcross generations of each trait were compared with the non-segregating generations, they were significantly larger than the E_W . These results indicated that genetic variance of all traits existed in generations derived from crossing between parents. Thus, the expected variation among F₂ individuals for all traits which consisted of $\frac{1}{2}$ D + $\frac{1}{4}$ H + E_W was significantly larger than E_W. Consequently, the F₂ variance was segregating at a large number of genes with small effect or a few genes with large affect. When investigating the variance of F₂ generation of each trait, the value of F2 generation variance was larger than the variance of P1, P2 and F1. Based on this reason, Si content in rice tissues, yield and yield components traits might be also controlled by a large number of genes with small effect (Kearsey and Pooni, 1996).

The variance components of the six basic generations of each trait in both crosses which were estimated by the weighted least squares procedure for fitting the perfect model were four parameters, D, H, F and E_W . The chi-square test showed that these component variances fitted the perfect model and was not significantly different for each trait in both crosses. So that, the variation of each trait in both crosses seemed to be adequate to fit the D, H, F and E_W model. However, some parameters in the D, H, F and E_W model showed non-significant difference from zero when checked with the T-test. These conditions indicated that the effects of individual genes are very small (Kearsey and Pooni, 1996). The data were then proceeded to the fitting model in order to obtain the best statistical *cum* biological model by using model which is fitted with different combinations of parameters. The most appropriate model required at least two parameters, D and E_W , both of which were significant and the chi-square test of goodness of fit was non-significant for most traits. But some traits of both crosses required three parameters, D, F and E_W for the most appropriate model. Cross 1 was found in Si content in root at harvesting, number of panicles per

plant, number of spikelets per panicle, and spikelet fertility traits, and cross 2 was found in Si content in mature leaf blade, grain yield and 100-grain weight traits. These results were different from the results reported by Majumder *et al.* (1985), who reported that the variations of Si content in all the organs of rice were controlled by both additive and non-additive gene effects. However, their research was studied in rice under phosphorus-stress condition.

Since D variance could be fixed principally by selecting of homozygous lines and might be referred to as fixable gene effects (Mather and Jinks, 1971, 1977), so it was possible to improve the upland rice for drought stress condition by selecting genotypes which is able to accumulate high Si content in rice tissues together with high yield performance under drought stress condition. However, the whole traits under study were non-significant for H variance, indicating that every trait of parents in both crosses may be governed mostly by the dominant alleles and dominance gene effect was complete, therefore, H variances of all traits were zero (Kearsey and Pooni, 1996). Moreover, Kearsey and Pooni (1996) reported that detection of H was difficult because the basic generations were inefficient for determining dominance variance. The reasons were that firstly, because there may not be enough generations to fit a full trigenic interaction model and secondly, the number of parameters in a linkage model varies considerably with the particular set of generations in the experiment.

The data of six generation variances were used to estimate heritability of each trait which the genetic components were fitted to both the perfect fit values of D, H, F and E_W model and the most appropriate model. The results showed that the estimated h_n^2 from the most appropriate model for each trait was similar to the estimated h_b^2 and also similar to the estimated h_b^2 from the perfect fit values of D, H, F and E_W model. However, the most reliable heritability should be estimated from the most appropriate model because it involves only those components that are shown to be significant statistically (Kearsey and Pooni, 1996). The results of estimated heritability from the most appropriate model showed that the average h_n^2 of Si content in rice tissues in both crosses were 0.56, 0.60, 0.68, 0.56 and 0.66 for the young leaf blade, mature leaf blade, stem, root and hull, respectively. Average estimated h_n^2 of Si content in rice tissues in both crosses was 61.2% or was accounted for about 61.2% of the total phenotypic variance.

While the average h_n^2 for yield and yield components in both crosses were 0.67, 0.62, 0.65, 0.61 and 0.67 for grain yield, number of panicles per plant, number of spikelets per panicle, spikelet fertility and 100-grain weight, respectively, average estimated h_n^2 among yield and yield components in both crosses was about 64.4% or was accounted for about 64.4% of the total phenotypic variance.

However, estimated h^2 values from the perfect model in these studies indicated that the non-additive genetic variance may affect Si content in rice tissues, yield and yield components because the dominance variance of all traits were not significant from zero and the dominant ratio [$\sqrt{(H/D)}$] was actually large (Table 4.12 to 4.21).

These results indicated that the selection and breeding of upland rice for drought resistance might be successful if selection is made from high Si content in rice tissues, together with high yield and yield components. However, selection of Si content in rice plant tissues should be made at tillering stage. In addition, selection for drought resistance in upland rice should be carried out in various locations in order to decrease the environmental effects or formulate more gene frequency of traits by delaying selection until late generation, in order to allow every gene to become fully homozygous as suggested by Srinivese (1988), Chahal and Gosal (2002).

Results of this study could be concluded that under drought stress condition at tillering stage, Si content in both crosses of upland rice showed significance of genetic variation in all traits. The Si content in rice tissues was controlled largely by a number of genes with small effects. Most phenotypic variation of Si content in rice tissues was contributed by D and E_w. Average h_n^2 of Si content in rice tissues was 61.2% and average h_n^2 among yield and yield components was 64.4%. Since, high accumulation of Si in rice tissues are attributed to the ability of the roots to take up Si (Takahashi et al., 1990; Richmond and Sussman, 2003), therefore, the h_n^2 of Si uptake were rather high in this study. These results suggested that the ability of Si uptake in rice tissues can be employed and helpful as a selection criterion for breeding and improvement of drought tolerance in upland rice crops if crossing is made between biparental high Si uptake ability and followed by using more efficient selection methods.