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INTRODUCTION 
 

 

 Upland rice is grown in Asia, Africa and Latin America on nearly 19 million 

hectares, making up 12% of the total worldwide production of rice (Seebold et al., 

2000).  It is commonly grown higher in the toposequences on aerobic soils, 

sometimes on sloping lands.  Three predominant agroclimatic zones with different 

risks of drought and sets of additional constraints are recognized, which differ 

geographically and climatically:  dry plateaus of South Asia with permanent 

integrated system, hilly subhumid areas of mainland Southeast Asia with shifting 

cultivation and slash-and-burn, and equatorial humid areas with perennials in 

Indonesia, southern Vietnam and southern Philippines (Wade, 1999).  

 Shifting cultivation covers some 1 million hectares in extreme northeast India 

(Assam, Tripura, Manipur, Nagaland, Aruchnal Pradesh), north Myanmar, north 

Thailand, north Vietnam, Lao PDR and South China, which corresponds to the hilly 

semi-humid sub-ecosystem.  But some slash-and-burn is also found in Indonesia (10% 

of the upland rice area in Sumatra, West Kalimantan and Sulawesi) under equatorial 

conditions.  In the hilly semi-humid sub-ecosystem, the main constraints are weeds 

and poor soil fertility.  Drought sometimes is an intermittent problem.  Blast can be 

important locally or annually but is not a general problem.  Average yield varies 

widely; from 3.0 to 4.5 t ha-1 locally observed for a first year of slash-and-burn and 

down to less than 1 t ha-1 for harsher conditions (Courtois and Lafitte, 1999).   

 Drought is defined as a sustained period of time without significant rainfall 

(Swindale and Bidinger, 1981).  This is one of the major factors limiting upland rice 

yield and occurs frequently in rainfed uplands of north Thailand, which correspond to 

the hilly semi-humid sub-ecosystem.  In the hilly semi-humid sub-ecosystem, rainfall 

ranges from 1,200 to 3,000 mm.  This is enough to sustain the needs of the upland rice, 

but the distribution can be erratic, with risk of moderate drought spell (2-3 weeks) 

during the tillering stage of cropping season. It is the main cause of yield instability in 

upland rice (Courtois and Lafitte, 1999) which is directly proportional to 
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the amount of water transpired and nutrient uptake (Alam, 1999; Shama and Singh, 

1999); so the high tolerance of upland rice to drought has been the subject of studies 

of many plant physiologists and breeders.  

Study on plant physiology, silicon is an essential element for rice (Takahashi, 

1995) and has also been implicated in drought resistance (Lux et al., 2002) because 

most of the silicon in rice is deposited in the outer walls of the epidermal cells of the 

leaves.  The epidermal cell walls are impregnated with a layer of silicon and become 

an effective barrier against water loss by cuticular transpiration (Balasta et al., 1989).  

These findings demonstrate that by increasing silicon content of rice plant, it may be 

possible to reduce their internal water stress.  Besides drought tolerance, silicon 

content in some rice genotypes has been correlated with disease and/or insect 

resistance (Datnoff et al., 1991, 1992) and shown to be an indicator of adequacy of 

plant available silicon for achieving high acceptable grain yield (Snyder et al., 1986); 

therefore, it should be possible to breed upland rice for drought condition by selecting 

high silicon uptake genotypes.  However, it is essential to understand the mode of 

inheritance for this efficient breeding program because the information in its turn can 

be used to make important decisions about the strategies and tactics of upland rice 

breeding.  At present, there is no report about the inheritance of silicon uptake under 

drought condition.  Thus, studying about genetics analysis of silicon uptake in upland 

rice under drought condition is essential to understand for developing and selecting 

drought resistance genotypes.  The work reported in this thesis is based on the 

following three hypotheses: 

1.  The upland rice genotypes will differ in their silicon uptake abilities under 

drought condition. 

2.  Under drought condition, there is a relationship between the leaf silicon 

content and drought resistance in rice genotypes. 

3.  Inheritance of silicon uptake, yield and yield component traits in upland 

rice which is grown under drought condition is complex and controlled by many 

genes. 

 

 
 




