TABLE OF CONTENTS

	Page
ACKNOWLEDGMENT	iii
ABSTRACT (English)	iv
ABSTRACT (Thai)	vi
TABLE OF CONTENTS	ix
LIST OF TABLES	xi
ABBREVIATIONS AND SYMBOLS	xvi
INTRODUCTION	1
CHAPTER 1 LITERATURE REVIEW	3
1.1 Introduction	3
1.2 Silicon in Rice	4
1.2.1 Chemical form and accumulation process of	
silicon in rice	5
1.2.2 Silicon uptake in rice plant and the mechanism of	
uptake	6
1.3 Beneficial effects of silicon on rice growth and yield	7
1.4 Beneficial effects of silicon in rice under stress	
	8
1.4.1 Silicon and biotic stress	8
1.4.2 Silicon and abiotic stress	S 12
1.5 Genotypic variability for silicon concentration in rice	15
1.6 Conclusion and objective	e 17
CHAPTER 2 VARIATION OF SILICON CONTENT IN UPLAND	
RICE GENOTYPES UNDER DROUGHT CONDITION	18
2.1 Introduction	18
2.2 Materials and methods	21

	Page
2.3 Results	23
2.3.1 Leaf rolling score	23
2.3.2 Si content in rice plant tissues	23
2.3.3 Yield and Yield Components	28
2.4 Discussion	31
CHAPTER 3 ROLE OF SILICON FOR DROUGHT RESISTANCE	
IN UPLAND RICE	36
3.1 Introduction	36
3.2 Materials and methods	41
3.3 Results	43
3.3.1 Dry weight	43
3.3.2 Stomatal resistance of leaves	45
3.3.3 Relative water content	45
3.3.4 Proline accumulation in leaves	47
3.3.5 Si content in leaf blade and stem tissues	47
3.4 Discussion	49
CHAPTER 4 GENETICS OF SILICON UPTAKE IN UPLAND	
RICE UNDER DROUGHT CONDITION	53
4.1 Introduction	53
4.2 Materials and methods	54
4.3 Genetics analysis	55
4.4 Results	_ 60
4.4.1 The variances of the six basic generations	60
4.4.2 Estimation of genetical components	66
4.4.3 Heritability	ersi ₆₆
4.4.4 The number of genes	67
4.5 Discussion	91
CHAPTER 5 GENERAL DISCUSSION	95
REFERENCES	98
CURRICULUM VITAE	113

LIST OF TABLES

Table		Page
2.1	Mean of leaf rolling score and silicon content (dry weight basis) in	
	rice plant tissues of 52 upland rice genotypes recorded at tillering	
	stage (45 days after emergence) when grown under drought	
	condition.	24
2.2	Mean of silicon content (dry weight basis) in rice plant tissues of 52	
	upland rice genotypes recorded at harvesting stage when grown	
	under drought condition at tillering stage.	26
2.3	Yield and yield components of 52 upland rice genotypes recorded at	
	harvesting stage when grown under drought condition at tillering	
	stage.	29
2.4	Correlations among leaf rolling score, Si content in rice plant tissues,	
	yield and yield components.	32
3.1	Effect of Si application on root dry weight, shoot dry weight, and	
	total dry weight of var. Hao, IRAT 191, SMG 9037-2-1-1-2 and	
	SMGC 90002-4 grown under drought condition.	44
3.2	Effect of Si application on stomatal resistance, relative water content,	
	and proline accumulation of var. Hao, IRAT 191, SMG 9037-2-1-1-2	
	and SMGC 90002-4 grown under drought condition.	46
3.3	Effect of Si application on Si content in leaf blade, and stem tissues	
	of var. Hao, IRAT 191, SMG 9037-2-1-1-2 and SMGC 90002-4	
	grown under drought condition.	48
3.4	Correlations among stomatal resistance (SR), relative water content	
	(RWC), root dry weight (RDW), shoot dry weight (SDW), total dry	
	weight (TDW), proline accumulation (P), Si content in stem tissues	
	(Si-C) and Si content in leaf blade tissues (Si-L) grown under drought	
	condition.	50

Table		Page
4.1	Expectations of the within-family variances in terms of the additive	
	dominance genetic and the additive environmental components of	
	variation (Kearsey, 1993).	59
4.2	Within-family variances for the six basic generations for Si content in	
	leaf blade at tillering stage.	61
4.3	Within-family variances for the six basic generations for Si content in	
	leaf blade at harvesting stage.	61
4.4	Within-family variances for the six basic generations for Si content in	
	stem at harvesting stage.	62
4.5	Within-family variances for the six basic generations for Si content in	
	root at harvesting stage.	62
4.6	Within-family variances for the six basic generations for Si content in	
	hull at harvesting stage.	63
4.7	Within-family variances for the six basic generations for grain yield.	63
4.8	Within-family variances for the six basic generations for number of	
	panicles per plant.	64
4.9	Within-family variances for the six basic generations for number of	
	spikelets per panicles.	64
4.10	Within-family variances for the six basic generations for spikelet	
	fertility.	65
4.11	Within-family variances for the six basic generations for 100-grain	
	weight.	65
4.12	Results of estimated variance components by the variances of six	
	basic generations to fit the perfect model for Si content in leaf blade	
	at tillering stage.	68
4.13	Results of estimated variance components by the variances of six	
	basic generations to fit the perfect model for Si content in leaf blade	
	at harvesting stage.	69

Table		Page
4.14	Results of estimated variance components by the variances of six	
	basic generations to fit the perfect model for Si content in stem at	
	harvesting stage.	70
4.15	Results of estimated variance components by the variances of six	
	basic generations to fit the perfect model for Si content in root at	
	harvesting stage.	71
4.16	Results of estimated variance components by the variances of six	
	basic generations to fit the perfect model for Si content in hull at	
	harvesting stage.	72
4.17	Results of estimated variance components by the variances of six	
	basic generations to fit the perfect model for grain yield.	73
4.18	Results of estimated variance components by the variances of six	
	basic generations to fit the perfect model for number of panicles per	
	plant.	74
4.19	Results of estimated variance components by the variances of six	
	basic generations to fit the perfect model for number of spikelets per	
	panicle.	75
4.20	Results of estimated variance components by the variances of six	
	basic generations to fit the perfect model for spikelet fertility.	76
4.21	Results of estimated variance components by the variances of six	
	basic generations to fit the perfect model for 100-grain weight.	77
4.22	Results of estimated variance components by the variances of six	
	basic generations to fit the most appropriate model for Si content in	
	leaf blade at tillering stage.	78
4.23	Results of estimated variance components by the variances of six	
	basic generations to fit the most appropriate model for Si content in	
	leaf blade at harvesting stage.	79
4.24	Results of estimated variance components by the variances of six	
	basic generations to fit the most appropriate model for Si content in	
	stem at harvesting stage.	80

xiii

Table		Page
4.25	Results of estimated variance components by the variances of six	
	basic generations to fit the most appropriate model for Si content in	
	root at harvesting stage.	81
4.26	Results of estimated variance components by the variances of six	
	basic generations to fit the most appropriate model for Si content in	
	hull at harvesting stage.	82
4.27	Results of estimated variance components by the variances of six	
	basic generations to fit the most appropriate model for grain yield.	83
4.28	Results of estimated variance components by the variances of six	
	basic generations to fit the most appropriate model for number of	
	panicles per plant.	84
4.29	Results of estimated variance components by the variances of six	
	basic generations to fit the most appropriate model for number of	
	spikelets per panicle.	85
4.30	Results of estimated variance components by the variances of six	
	basic generations to fit the most appropriate model for spikelet	
	fertility.	86
4.31	Results of estimated variance components by the variances of six	
	basic generations to fit the most appropriate model for 100-grain	
	weight.	87
4.32	The h_b^2 of Si content in rice tissues, yield and yield component traits	
	calculated from the expected value of parameter in the perfect model.	88
4.33	The h_n^2 of Si content in rice tissues, yield and yield component traits	
	calculated from the expected value of parameter in the perfect model.	88
4.34	The h ² _b of Si content in rice tissues, yield and yield component traits	
	calculated from the expected value of parameter in the most	
	appropriate model.	89
4.35	The h_n^2 of Si content in rice tissues, yield and yield component traits	
	calculated from the expected value of parameter in the most	
	appropriate model.	89

xiv

Table		Page
4.36	The number of genes (N) in crosses 1 (Hao x IRAT191) for	
	controlling the expression of Si content in rice tissues, yield and yield	
	components.	90
4.37	The number of genes (N) in crosses 2 (SMGC90002-4 x SMG9037-	
	2-1-1-2) for controlling the expression of Si content in rice tissues,	
	yield and yield components.	90
4.38	The average number of genes in both crosses for controlling the	
	expression of Si content in rice tissues yield and yield components	01

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

A-a	A pair of alleles, a gene pair, a single-gene difference. A is the allele
	that increases and a decreases the expression of the character.
d	The departure of one of a pair of corresponding homozygotes from
	their mid-point or mid-parent (m). It is positive for the homozygote
	carrying the increasing allele and negative for that carrying the
	decreasing allele. The relevant gene pair may be denoted by a
	subscript: thus AA departs from m by d_a and aa departs from m by $-d_a$
D	= S(d ²) The genetical additive component of variation
df	Degrees of freedom.
Ew	The non-heritable component of variation ascribable to differences
	expressed within a family.
F	= S(dh)
Н	= $S(h_2)$ The dominance component of variation.
√ (H/D)	Dominance ratio
h^2	Heritability
h^2_b, h^2_n	Broad and narrow sense heritability.
Р	Probability, in relation to test of significance
Si	Silicon
s^2	Sample variance
s ² _{P1} , etc.	Variance of P_1 , etc.
ovyng	A variance, the relevance of which is indicated by a subscript. Thus
	V_{P1} is the variance of P_1 (the larger parent), V_{F1} that of F_1 , V_{F2} the of F_2
	etc. 6
χ^2 [df]	Chi-square

xvi

INTRODUCTION

Upland rice is grown in Asia, Africa and Latin America on nearly 19 million hectares, making up 12% of the total worldwide production of rice (Seebold *et al.*, 2000). It is commonly grown higher in the toposequences on aerobic soils, sometimes on sloping lands. Three predominant agroclimatic zones with different risks of drought and sets of additional constraints are recognized, which differ geographically and climatically: dry plateaus of South Asia with permanent integrated system, hilly subhumid areas of mainland Southeast Asia with shifting cultivation and slash-and-burn, and equatorial humid areas with perennials in Indonesia, southern Vietnam and southern Philippines (Wade, 1999).

Shifting cultivation covers some 1 million hectares in extreme northeast India (Assam, Tripura, Manipur, Nagaland, Aruchnal Pradesh), north Myanmar, north Thailand, north Vietnam, Lao PDR and South China, which corresponds to the hilly semi-humid sub-ecosystem. But some slash-and-burn is also found in Indonesia (10% of the upland rice area in Sumatra, West Kalimantan and Sulawesi) under equatorial conditions. In the hilly semi-humid sub-ecosystem, the main constraints are weeds and poor soil fertility. Drought sometimes is an intermittent problem. Blast can be important locally or annually but is not a general problem. Average yield varies widely; from 3.0 to 4.5 t ha⁻¹ locally observed for a first year of slash-and-burn and down to less than 1 t ha⁻¹ for harsher conditions (Courtois and Lafitte, 1999).

Drought is defined as a sustained period of time without significant rainfall (Swindale and Bidinger, 1981). This is one of the major factors limiting upland rice yield and occurs frequently in rainfed uplands of north Thailand, which correspond to the hilly semi-humid sub-ecosystem. In the hilly semi-humid sub-ecosystem, rainfall ranges from 1,200 to 3,000 mm. This is enough to sustain the needs of the upland rice, but the distribution can be erratic, with risk of moderate drought spell (2-3 weeks) during the tillering stage of cropping season. It is the main cause of yield instability in upland rice (Courtois and Lafitte, 1999) which is directly proportional to

the amount of water transpired and nutrient uptake (Alam, 1999; Shama and Singh, 1999); so the high tolerance of upland rice to drought has been the subject of studies of many plant physiologists and breeders.

Study on plant physiology, silicon is an essential element for rice (Takahashi, 1995) and has also been implicated in drought resistance (Lux et al., 2002) because most of the silicon in rice is deposited in the outer walls of the epidermal cells of the leaves. The epidermal cell walls are impregnated with a layer of silicon and become an effective barrier against water loss by cuticular transpiration (Balasta et al., 1989). These findings demonstrate that by increasing silicon content of rice plant, it may be possible to reduce their internal water stress. Besides drought tolerance, silicon content in some rice genotypes has been correlated with disease and/or insect resistance (Datnoff et al., 1991, 1992) and shown to be an indicator of adequacy of plant available silicon for achieving high acceptable grain yield (Snyder et al., 1986); therefore, it should be possible to breed upland rice for drought condition by selecting high silicon uptake genotypes. However, it is essential to understand the mode of inheritance for this efficient breeding program because the information in its turn can be used to make important decisions about the strategies and tactics of upland rice breeding. At present, there is no report about the inheritance of silicon uptake under drought condition. Thus, studying about genetics analysis of silicon uptake in upland rice under drought condition is essential to understand for developing and selecting drought resistance genotypes. The work reported in this thesis is based on the following three hypotheses:

1. The upland rice genotypes will differ in their silicon uptake abilities under drought condition.

2. Under drought condition, there is a relationship between the leaf silicon content and drought resistance in rice genotypes.

3. Inheritance of silicon uptake, yield and yield component traits in upland rice which is grown under drought condition is complex and controlled by many genes.