Table of Content

ACKNOWLEDGEM	ENTS	iii
ABSTRACT (Eng)		v
ABSTRACT (Thai)		x
Table of Content		xvi
List of Tables		xxii
List of Illustrations		xxxiii
Introduction		1
Chapter 1 Literatur	re review	5
1.1 Rice	Production	5
1,1.1	Rice production in Asia	5
1.1.2	Rice production in Africa	7
1.1.3	Rice production in other regions	8
1.2 Rice	cultivation system	10
1.2.1	Irrigated rice ecosystem	12
Jans 1.2.2	Rainfed rice ecosystem	12
1.2.3	Deepwater and floating rice ecosystem	13
1.2.4	Upland rice ecosystem	13
1.3 Rain	fed lowland rice ecosystem	e 0 ₁₄
1.3.1	Water soil conditions	14
1.3.2	Nutrient availability	17

	1.4 Growth and development of rice plant	24
	1.4.1 Vegetative growth stage	25
	1.4.2 Reproductive growth stage	26
	1.4.3 Ripening and senescence stage	27
	1.5 The adaptation of plants to aerobic and anaerobic	
	conditions	27
	1.5.1 Root function in aerobic soil conditions	27
	1.5.2 Plant in anaerobic conditions	28
	1.5.3 Plant in alternate of aerobic and anaerobic conditions	29
	1.6 Plant adaptation to phosphorus stress	30
	1.7 The genotypic variation in responses to water regimes and	
	phosphorus supply	31
	1.8 Use of nutrient solution to simulate waterlogged and	
	aerated soils for rice culture	33
Chapter 2	Responses of upland and wetland rice cultivars to flooded	
	and well drained soil water conditions	35
	2.1 Introduction	35
	2.2 Materials and Methods	37
	2.2.1 Experiment 1: Responses of rice in waterlogged and	
	well drained soils many Mai Univers	37
	2.2.2 Experiment 2: Responses of rice in fluctuation of	
	soil water regimes	38
	2.2.3 Statistic analysis	39

xvii

2.3	Results	41
	2.3.1 Experiment 1: Responses of rice in waterlogged and	
	well drained soils	41
	2.3.2 Experiment2: Responses of rice in fluctuation of soil	
	water regimes	54
2.4	Discussion	62
Chapter 3 Solu	ition culture: Method development for using stagnant	
nuti	rient solution culture	66
3.1	Introduction	66
3.2	Materials and methods	68
	3.2.1 Experiment 1: Comparing of rice growth in soil and	
	nutrient solution culture	68
	3.2.2 Experiment 2: Comparing of rice growth in stagnant	
	and aerated nutrient solution culture	69
	3.2.3 Experiment 3: Iron compound and concentration for	
	rice growth in solution culture	70
	3.2.4 Experiment 4: Comparing three levels of oxygen	
	supply for rice growth in solution culture	71
	3.2.5 Experiment 5: Comparing four levels of oxygen	
	supply for rice growth in solution culture	72
	3.2.6 Statistic analysis	72
3.3	Results	73

	3.3.1 Experiment 1: Comparing of rice growth in soil and	
	nutrient solution culture	73
	3.3.2 Experiment 2: Comparing of rice growth in stagnant	
	and aerated nutrient solution culture	80
	3.3.3 Experiment 3: Iron compound and concentration for	
	rice growth in solution culture	84
	3.3.4 Experiment 4: Comparing three levels of oxygen	
	supply for rice growth in solution culture	87
	3.3.5 Experiment 5: Comparing four levels of oxygen	
	supply for rice growth in solution culture	95
3.	.4 Discussion	99
Chapter 4 M	Iorphological and physiological responses of rice to limited	
pł	hosphorus supply in aerated and stagnant solution culture	104
4.	1 Introduction	104
4.	.2 Materials and methods	106
	4.2.1 Experiment 1Australian rice in alteration of O_2 and P	
	supplies in solution culture	106
	4.2.2 Experiment 2: Short term responses of Australian	
	rice to alteration of O_2 and P supplies	110
	4.2.3 Experiment 3: Short term responses of Australian	
	rice to alteration of O ₂ and P supplies (Repeat)	(111
	4.2.4 Statistic analysis	112
4.	.3 Results	113

	4.3.1 Experiment 1: Australian rice in alteration of O_2 and	
	P supplies in solution culture	113
	4.3.2 Experiment 2 and 3: Short term responses of	
	Australian rice to alteration of O ₂ and P supplies	123
	4.4 Discussion	137
Chapter 5	Genotypic variation in responses to phosphorus stress	
	under aerobic and anaerobic conditions	144
	5.1 Introduction	144
	5.2 Materials and methods	145
	5.2.1 Experiment 1: Responses of Thai rice cultivars to P	
	stress in solution culture	145
	5.2.2 Experiment 2: Short term responses of RD7 to P	
	stress in solution culture	146
	5.2.3 Experiment 3: Phosphorus stress tolerance of three	
	Australian rice cultivars	146
	5.2.4 Statistic analysis	147
	5.3 Results	147
	5.3.1 Experiment 1: Responses of Thai rice cultivars to P	
	stress in solution culture	147
	5.3.2 Experiment 2: Short term responses of RD7 to P	
	stress in solution culture	158
	5.3.3 Experiment 3: Phosphorus stress tolerance of three	
	Australian rice cultivars	167

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

List of Table

Table		Page
2.2.1.1	General characteristics of San Sai soil series used for all	
	experiments.	40
2.3.1.1	The longest root length (cm) of four rice cultivars when grown in	
	waterlogged (W+) and well drained (W0) soil conditions for 2, 8	
	and 10 weeks.	43
2.3.1.2	Total root volume (ml) of four rice cultivars when grown in	
	waterlogged (W+) and well drained (W0) soil conditions for 10	
	weeks.	44
2.3.1.3	Root dry weight (mg/plant) of four rice cultivars when grown in	
	waterlogged (W+) and well drained (W0) soil conditions for 2 and	
	10 weeks. Values at 2 weeks are means of three replicates \pm	
	standard errors.	45
2.3.1.4	The maximum shoot length (cm) of four rice cultivars when grown	
	in waterlogged (W+) and well drained (W0) soil conditions for 10	
	weeks.	48
2.3.1.5	Shoot dry weight (g plant ⁻¹) of four rice cultivars when grown in	
	waterlogged (W+) and well drained (W0) soil conditions for four	
	weeks.	49

- Shoot dry weight (g plant⁻¹) of four rice cultivars when grown in 2.3.1.6 waterlogged (W+) and well drained (W0) soil conditions for 10 weeks. 50 Root/shoot ratio of four rice cultivars when grown in waterlogged 2.3.1.7 (W+) and well drained (W0) soil conditions for 10 weeks. Values are means of three replicates \pm standard errors. 51 2.3.1.8 Nitrogen (N), phosphorus (P) and potassium (K) contents (mg plant⁻¹) of four rice cultivars when grown in waterlogged (W+) and well drained (W0) soil conditions for eight weeks. 53 2.3.2.1 Maximum root length (cm) of three rice cultivars when grown in treatments including waterlogging 2-9 weeks (W++++) and drainage at 2-3 (W0+++), 4-5 (W+0++), 6-7 (W++0+), and 4-9 weeks (W+000), values for harvests at seven and nine weeks. 56 2.3.2.2 Total root volume (ml) of three rice cultivars when grown in when grown in treatments including waterlogging 2-7 weeks (W+++) and drainage at 2-3 (W0++), 4-5 (W+0+), 6-7 (W++0), and 4-7 weeks (W+00) soil conditions at seven weeks. 57 Root dry weight and shoot dry weight (g plant⁻¹) of three rice 2.3.2.3 cultivars when grown in treatments including waterlogging 2-5 weeks (W++) and drainage at 2-3 (W0+), 4-5 (W+0) in soil at five weeks. 58
- xxiii

- 2.3.2.4 Nitrogen concentration (%) of three rice cultivars when grown in when grown in treatments including waterlogging 2-7 weeks (W+++) and drainage at 2-3 (W0++), 4-5 (W+0+), 6-7 (W++0), and 4-9 weeks (W+00) soil conditions at seven weeks.
- 2.3.2.5 Phosphorus content (mg plant⁻¹) of three rice cultivars when grown in waterlogged (W+) and well drained (W0) soil conditions at three weeks.
- 2.3.2.6 Potassium concentration (%) of three rice cultivars when grown in when grown in treatments including waterlogging 2-7 weeks (W+++) and drainage at 2-3 (W0++), 4-5 (W+0+), 6-7 (W++0), and 4-9 weeks (W+00) soil conditions at seven weeks.
- 3.3.1.1 Root, shoot and total plant dry weight (g plant⁻¹) of KDML105 when grown in soil (waterlogged; W+, well drained; W0) and nutrient solution (Aerated; A and Stagnant; S) for two weeks.
- 3.3.1.2 A maximum shoot length (cm) and number of leaves of KDML105 when grown in soil (waterlogged; W+, well drained; W0) and nutrient solution (Aerated; A and Stagnant; S) cultures for three weeks.
- 3.3.1.3 The number of roots and shoot and root dry weights (g plant⁻¹) of
 KDML105 when grown in soil (waterlogged; W+, well drained;
 W0) and nutrient solution (Aerated; A and Stagnant; S) for three weeks.

76

59

60

61

74

3.3.1.4	Root growth of KDML105 when grown in soil (waterlogged; W+,	
	well drained; W0) and nutrient solution (Aerated; A and Stagnant;	
	S) for four weeks.	77
3.3.1.5	Shoot growth of KDML105 when grown in soil (waterlogged;	
	W+, well drained; W0) and nutrient solution (Aerated; A and	
	Stagnant; S) cultures for four weeks.	78
3.3.1.6	Root and shoot growth of KDML105 when grown in soil	
	(waterlogged; W+, well drained; W0) and nutrient solution	
	(Aerated; A and Stagnant; S) cultures for five and seven weeks.	79
3.3.2.1	Root and shoot lengths (cm) of 15 rice cultivars when grown in	
	aerated (A) and stagnant (S) nutrient solution for four weeks.	81
3.3.2.2	Root and leaf numbers of 15 rice cultivars when grown in aerated	
	(A) and stagnant (S) nutrient solution for four weeks.	82
3.3.2.3	Root and shoot dry weight (g plant ⁻¹) of 15 rice cultivars when	
	grown in aerated (A) and stagnant (S) nutrient solution for four	
	weeks.	83
3.3.3.1	Growth of rice plants when grown in nutrient solution at 3 levels	
	of Fe EDTA; 100, 150 and 200 μ M in no oxygen bubbling (0) or 3	
	hrs per day of air bubbling (3).	85
3.3.3.2	Dry weight (g plant ⁻¹) of rice plants when grown in nutrient	
	solution culture at 3 levels of Fe EDTA; 100, 150 and 200 μM in	
	no oxygen bubbling (0) or 3 hrs per day of oxygen bubbling (3).	86

3.3.4.1	Maximum root length (cm) of three rice cultivars when grown in	
	stagnant, still and aerated nutrient solution for four weeks.	89
3.3.4.2	Root numbers of three rice cultivars when grown in stagnant, still	
	and aerated nutrient solution for four weeks.	90
3.3.4.3	Root dry weight (g/plant) of three rice cultivars when grown in	
	stagnant, still and aerated nutrient solution for four weeks.	91
3.3.4.4	Shoot dry weight (g/plant) of three rice cultivars when grown in	
	stagnant, still and aerated nutrient solution for four weeks.	92
3.3.4.5	Tiller numbers of three rice cultivar when grown in stagnant, still	
	and aerated nutrient solution for four weeks.	93
3.3.4.6	SPAD values of three rice cultivars when grown in stagnant, still	
	and aerated nutrient solution for four weeks.	94
3.3.5.1	Plant growth characteristics of Chainat 1 when grown in different	
	culture conditions of oxygen concentration in nutrient solution for	
	four weeks.	96
3.3.5.2	Plant growth characteristics of Chainat1 when grown in different	
	culture conditions of oxygen concentration in nutrient solution for	
	six weeks.	97
3.3.5.3	Nutrient content (mg plant ⁻¹) of Chainat1 when grown in different	
	culture conditions of oxygen concentration in nutrient solution for	
	six weeks. In the serve	98

xxvi

- 4.2.1 Treatments of oxygen (aerated; A and stagnant; S) and phosphorus
 (High P; 200 μM and Low P; 1.6 μM) levels imposed on
 Australian rice (cv. Amaroo) in different periods.
- 4.3.1.1 The number of adventitious roots per plant and root/shoot ratio of Amaroo when grown in aerated and stagnant nutrient solution culture at high P supply for two weeks.
- 4.3.1.2 Root porosity (%) of a whole root system and aerenchyma formation (%) at 50 mm from the root tip and 20 mm from the root base of Amaroo when grown in aerated and stagnant nutrient solution culture at high P supply for two weeks.
- 4.3.1.3 The maximum root length (cm), root/shoot ratio and photosynthesis rate (μ mol m² s⁻¹) of Amaroo after transferred from aerated or stagnant nutrient solution culture at high P supply to aerated and stagnant nutrient solution culture at high or low P supply for one week.
- 4.3.1.4 Root porosity (%), aerenchyma formation (%) at 20 and 50 mm from root tip of Amaroo after transferred from aerated or stagnant nutrient solution culture at high P supply to aerated and stagnant nutrient solution culture at high or low P supply for one week.
 4.3.1.5 The maximum root and shoot length (cm) and number of leaves per plant of Amaroo after transferred from aerated or stagnant nutrient solution culture at high P supply to aerated and stagnant nutrient solution culture at high P supply to aerated and stagnant per plant of Amaroo after transferred from aerated or stagnant nutrient solution culture at high P supply to aerated and stagnant

nutrient solution culture at high or low P supply for two weeks.

117

109

116

118

119

- 4.3.1.6 Root and shoot dry weight (g plant⁻¹) and root/shoot ratio of Amaroo after transferred from aerated or stagnant nutrient solution culture at high P supply to aerated and stagnant nutrient solution culture at high or low P supply for two weeks.
- 4.3.1.7 Photosynthesis rate (μmol m² s⁻¹), root porosity (%) of a whole root system and aerenchyma formation (%) at 50 mm from the root tip of Amaroo after transferred from aerated or stagnant nutrient solution culture at high P supply to aerated and stagnant nutrient solution culture at high or low P supply for two weeks.
 4.3.2.1 Length of longest roots of rice (cv. Amaroo) grown in aerated solution with high P (200 μM) and then transferred to aerated or stagnant nutrient solution at low (1.6 μM) or high (200 μM) P supply for four and eight days. Values are means of three replicates ± standard errors.
- 4.3.2.2 Adventitious root and tiller numbers of rice (cv. Amaroo) grown in aerated solution with high P (200 μ M) level (initial condition) and then transferred to aerated or stagnant nutrient solution at low (1.6 μ M) or high (200 μ M) P supply for eight days. Values are means of three replicates \pm standard errors.
 - Root and shoot growth of rice (cv. Amaroo) in aerated solution with high P (200 μ M) supply (initial) and then transferred to aerated or stagnant nutrient solution at low (1.6 μ M) or high (200 μ M) P supply for eight days. Values are means of three replicates

122

121

127

128

 \pm standard errors.

- 4.3.2.4 Score for fluorescence of lignin and/or suberin in the layer of sclerenchymatous fibre cells in rice roots when grown in aerated solution with high P (200 μ M) and then transferred to aerated or stagnant nutrient solution at low (1.6 μ M) or high (200 μ M) P supply for eight days. Values are means of three replicates \pm standard errors.
- 4.3.2.5 O_2 consumption rate (n moles O_2 g⁻¹ Fresh Weight s⁻¹) of rice (cv. Amaroo) roots grown in aerated solution with high P (200 μ M) and then transferred to aerated or stagnant nutrient solution at low (1.6 μ M) or high (200 μ M) P supply for four days. Roots were cut into 5 mm segments for each zone and measured in the same solution as the growth medium. Values are means of four replicates \pm standard errors.
- 4.3.2.6 Phosphorus content in whole rice plants (mg plant⁻¹) grown in aerated solution with high P (200 μM) and then transferred to aerated or stagnant nutrient solution at low (1.6 μM) or high P supply for 1, 2, 4 and 8 days. Values are means of three replicates ± standard errors.
 5.3.1.1 Maximum root lengths (cm) of 10 rice cultivars when grown in

aerated and stagnant nutrient solution at 1.6 (low P) and 200 μ M (high P) for six weeks.

131

134

136

5.3.1.2	Root numbers of 10 rice cultivars when grown in aerated and	
	stagnant nutrient solution at 1.6 (low P) and 200 μM (high P) for	
	six weeks.	151
5.3.1.3	Root dry weight (g plant ⁻¹) of 10 rice cultivars when grown in	
	aerated and stagnant nutrient solution at 1.6 (low P) and 200 μM	
	(high P) for six weeks.	152
5.3.1.4	Shoot dry weight (g plant ⁻¹) of 10 rice cultivars when grown in	
	aerated and stagnant nutrient solution at 1.6 (low P) and 200 μM	
	(high P) for six weeks.	153
5.3.1.5	Tiller numbers of 10 rice cultivars when grown in aerated and	
	stagnant nutrient solution at 1.6 (low P) and 200 μ M (high P) for	
	six weeks	154
5.3.1.6	Leaf numbers of 10 rice cultivars when grown in aerated and	
	stagnant nutrient solution at 1.6 (low P) and 200 μ M (high P) for	
	six weeks.	155
5.3.1.7	Maximum shoot lengths (cm) of 10 rice cultivars when grown in	
	aerated and stagnant nutrient solution at 1.6 (low P) and 200 μM	
	(high P) for six weeks.	156
5.3.3.1	Maximum root length (cm) of three rice cultivars when grown in	
	aerated or stagnant at 50, 100, 200 and 400 μ M P of nutrient	
	solution cultures for two weeks.	168

XXX

5.3.3.2	Root numbers per plant of three rice cultivars when grown in	
	aerated or stagnant at 50, 100, 200 and 400 μM P of nutrient	
	solution cultures for two weeks.	169
5.3.3.3	Root dry weight (g plant ⁻¹) of three rice cultivars when grown in	
	aerated or stagnant at 50, 100, 200 and 400 μM P of nutrient	
	solution cultures for two weeks.	170
5.3.3.4	Maximum shoot length (cm) of three rice cultivars when grown in	
	aerated or stagnant at 50, 100, 200 and 400 μM P of nutrient	
	solution cultures for two weeks.	171
5.3.3.5	Maximum root length (cm) of three rice cultivars when grown in	
	aerated or stagnant at 1.6, 8, 40 and 200 μ M P of nutrient solution	
	cultures for four weeks.	174
5.3.3.6	Root numbers per plant of three rice cultivars when grown in	
	aerated or stagnant at 1.6, 8, 40 and 200 μ M P of nutrient solution	
	cultures for four weeks.	175
5.3.3.7	Root dry weight (g plant ⁻¹) of three rice cultivars when grown in	
	aerated or stagnant at 1.6, 8, 40 and 200 μM P of nutrient solution	
	cultures for four weeks.	176
5.3.3.8	Root porosity (%) of whole root system of three rice cultivars	
	when grown in aerated or stagnant at 1.6, 8, 40 and 200 μ M P of	
	nutrient solution cultures for four weeks.	C ₁₇₇

5.3.3.9	Shoot dry weight (g plant ⁻¹) of three rice cultivars when grown in	
	aerated or stagnant nutrient solution at 1.6, 8, 40 and 200 μM P for	
	four weeks.	178
5.3.3.10	Leaf numbers per plant of three rice cultivars when grown in	
	aerated or stagnant nutrient solution at 1.6, 8, 40 and 200 μM P for	
	four weeks.	179
5.3.3.11	Tiller numbers per plant of three rice cultivars when grown in	
	aerated or stagnant nutrient solution at 1.6, 8, 40 and 200 μM P for	
	four weeks.	180
5.3.3.12	Maximum shoot length (cm) of three rice cultivars when grown in	
	aerated or stagnant at 1.6, 8, 40 and 200 μ M P of nutrient solution	
	cultures for four weeks.	181

ລິບສິກລິ້ມหາວົກຍາລັຍເຮີຍວໃหມ່ Copyright © by Chiang Mai University All rights reserved

xxxiii

List of Illustrations

Figure		Page
1.2.1	The rice lands classified by water regime and predominant rice	
	type.	11
1.3.2.2.1	Typical seasonal total dry matter production and total nitrogen	
	accumulation of rice plant (Guindo et al., 1994a).	22
2.3.1.1	Aerenchyma appearance in adventitious roots at 5 cm from the	
	root tip of KN when grown in well drained (A) and waterlogged	
	(B) soil conditions compared with KDML105 when grown in	
	well-drained (C) and waterlogged (D) soil conditions.	52
4.3.2.1	Root porosity (% gas volume per unit root volume) of rice (cv.	
	Amaroo) grown in aerated solution with high (200 μ M) P (HP)	
	then transferred to aerated (open symbols) and stagnant (closed	
	symbols) solutions at 1.6 μ M P (\circ),and 200 μ M P (\Box). Root	
	porosity (%) was measured for the whole root system of each	
	plant. Bars represent standard errors of three replicates.	130
4.3.2.2	Typical transverse sections of rice roots showing autofluorescence	
	of the walls in the outer cell layers. Plants were grown for eight	
	days after transfer to high P level (200 μ M) in aerated nutrient	
	solution at 20 mm (A) and 70 mm (B) from the apex or in stagnant	
	nutrient solution at 20 mm (C) and 70 mm (D). Increased	
	autofluorescence in response to the stagnant treatment was evident	132

for the walls of the sclerenchymatous fibres, as well as those in the hypodermal cell layer and the cells to the immediate interior of the fibre cells. Average scoring of sections in triplicate is shown in Table 4.3.2.4.

4.3.2.3

4.3.2.4

Rate of radial O₂ loss (ROL) along adventitious roots of rice (cv. Amaroo) after transition to treatment solutions; aerated at 1.6 μ M P (\circ), and 200 μ M P (\Box) and stagnant at 1.6 μ M P (\bullet) and 200 μ M P (\bullet). Rates of ROL were measured from one 101-127 mm adventitious root of each of four 28 d-old plants in each treatment, with the treatment imposed for 1 (a), 2 (b), 4 (c) or 8 (d) days. Bars represent standard errors of four replicates.

Phosphorus uptake of rice (mg P g⁻¹ root dry weight) after transfer to treatment at 0-4 days and 4-8 days; aerated at 1.6 μ M P (A LP), and 200 μ M P (A HP) and stagnant at 1.6 μ M P (S LP) and 200 μ M P (S HP) nutrient solution culture. Plants were 28 d-old (initial) and the uptake was calculated as the final P content minus the initial P content. Bars represent means ± standard errors of three replicates. Different letters indicate significant differences at 5% level.

Correlation between P level and oxygen effects on root numbers of rice when grown in aerated and stagnant nutrient solution at 1.6 (low P) and 200 μ M (high P) for six weeks

133

135

5	5.3.2.1	Maximum root length (cm) of CNT1 (A) and RD7 (B) when	
		grown in aerated and stagnant nutrient solution at 1.6 (low P) and	
		200 μ M (high P) at initial, 2, 4 and 8 days.	159
5	5.3.2.2	Root numbers per plant of CNT1 (A) and RD7 (B) when grown in	
		aerated and stagnant nutrient solution at 1.6 (low P) and 200 μM	
		(high P) at initial, 2, 4 and 8 days.	160
5	5.3.2.3	Root dry weight (g plant ⁻¹) of CNT1 (A) and RD7 (B) when grown	
		in aerated and stagnant nutrient solution at 1.6 (low P) and 200	
		μ M (high P) at initial, 2, 4 and 8 days.	161
5	5.3.2.4	Root/shoo ratio of CNT1 (A) and RD7 (B) when grown in aerated	
		at low or high P and stagnant at low or high P solution cultures at	
		initial, 2, 4 and 8 days.	162
5	5.3.2.5	Root porosity (%) of CNT1 (A) and RD7 (B) when grown in	
		aerated and stagnant nutrient solution at 1.6 (low P) and 200 μM	
		(high P) at initial, 2, 4 and 8 days.	163
5	5.3.2.6	Tiller numbers per plant of CNT1 (A) and RD7 (B) when grown in	
		aerated and stagnant nutrient solution at 1.6 (low P) and 200 μM	
		(high P) at initial, 2, 4 and 8 days.	164
5	5.3.2.7	Phosphorus content (mg plant ⁻¹) of CNT1 (A) and RD7 (B) when	
		grown in aerated and stagnant nutrient solution at 1.6 (low P) and	
		200 μ M (high P) at initial, 2, 4 and 8 days.	165

XXXV

5.3.2.8 Phosphorus uptake efficiency (mgP g⁻¹ root dry weight) of CNT1 (A) and RD7 (B) when grown in aerated and stagnant nutrient solution at 1.6 (low P) and 200 μ M (high P) at initial, 2, 4 and 8

166

ลือสิทธิ์มหาวิทยาลัยเชียอไหม่ Copyright © by Chiang Mai University All rights reserved