TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (English)	v
ABSTRACT(Thai)	X
TABLE OF CONTENTS	xiv
LIST OF TABLES	xviii
LIST OF ILLUSTRATIONS	xxii
ABBREVIATIONS	xxviii
GENERAL INTRODUCTION	1
LITERATURE REVIEW	7
Peanut or Groundnut	7
Minirhizotrons	12
Root analysis software	14
WinRhizo	14
Root Measurement System (RMS)	16
Quantitative Analysis of Color System (QuaCos)	16
Carbon dioxide and Temperature	17
Effects of long-term CO ₂ enrichment on physiological aspects of	17
peanut yields	
Effect of temperature on peanut growth	19
Effect of temperature and CO ₂ on plant growth and development	20

xiv

	Page
Response of peanut plant to drought	22
Aspergillus flavus associated with aflatoxin production	29
Green fluorescent protein (GFP) Aspergillus flavus	33
Drought and aflatoxin contamination in peanut	34
Seed biochemical components in relation to Aspergillus flavus	38
growth and aflatoxin production	
EXPERIMENT 1: Effects of temperature and elevated CO ₂ on peanut	43
growth and Aspergillus flavus infection	
Introduction	44
Materials and Methods	47
Sub-experiment 1:Effects of temperature and elevated CO ₂ on	47
peanut growth and Aspergillus flavus infection	
Sub-experiment 2: Peanut root growth responses to different	55
atmospheric temperature and CO ₂	
concentration	
Results	59
Effects of temperature and elevated CO ₂ on peanut growth and	59
Aspergillus flavus infection (Long-term experiment)	
Infection and colonization of peanut by A. <i>flavus</i>	67

temperature and CO_2 concentration (Short-term experiment)

Peanut root growth responses to different atmospheric

Discussion

71

	Page
EXPERIMENT 2: Effects of drought on peanut growth and	81
Aspergillus flavus infection	
Introduction	82
Materials and Methods	86
Sub-experiment 1: Effect of drought duration on peanut growth	86
and Aspergillus flavus infection	
Sub-experiment 2: Biochemical responses of peanut pods to	91
drought and Aspergillus flavus infection	
Results	99
Effect of drought duration on peanut growth and Aspergillus	99
flavus infection	
- Soil water potential	99
- Shoot growth	105
- Root growth	115
- Final Sampling	120
- Aspergillus flavus infection	124
Biochemical responses of peanut pods to drought and Aspergillus	129
flavus infection	
- Pod shell and seed infection by Aspergillus flavus	S ₁₂₉
- Chemical composition in pod shell and seed coat of peanut	129
- Chemical composition in pod shell and seed coat of peanut	135
Discussion	137

	Page
EXPERIMENT 3: Invasion pathway of peanut flower by green	147
fluorescence protein Aspergillus flavus	
Introduction	148
Materials and Methods	150
Results	154
Floral infection	154
Aerial peg infection	160
Discussion	161
SUMMARY AND CONCLUSIONS	165
REFERENCES	172
APPENDIX	200
CURRICULUM VITAE	208

All rights reserved

xvii

LIST OF TABLES

Table	Description of table	Page
2.1	Nutrient components of half strength Hoagland's solution for	54
	peanut culture	
2.2	Vegetative growth and total biomass at 112 days after planting	65
	of peanut grown in three atmospheric CO ₂ levels and two air	
	temperature treatments.	
2.3	Relative Aspergillus flavus population density as estimated by	70
	green fluorescence color value (64×48 groups of each image) in	
	the root zone at 5 cm soil depth at harvest of Tainan 9 peanut	
	grown under 6 different CO_2 by temperature combinations in the	
	growth chambers of the Georgia Envirotron.	
3.1	Significant differences for plant traits measured at 25 to 109	109
	days after planting (DAP).	
3.2	Area of 100 leaves plant ⁻¹ measured at 120 DAP of 3 peanut	121
	genotypes grown under 4 water treatments at a green house of	
	the Georgia Envirotron, GA, 2002.	
3.3	Specific leaf area of 100 leaves plant ⁻¹ measured at 120 DAP of	122
	3 peanut genotypes grown under 4 water treatments at a green	
	house of the Georgia Envirotron, GA, 2002.	

xviii

Table	Description of table	Page
3.4	Shoot dry weight of 3 peanut genotypes grown under 4 water	122
	treatments in a green house of the Georgia Envirotron, GA,	
3.5	Dry weight of mature peanut pods grown under 4 water	123
	treatments in a green house of the Georgia Envirotron, GA,	
	2002.	
3.6	Relative Aspergillus flavus population density (64×48 groups	127
	of each image) on the root zone at 5 cm depth soil layer of three	
	peanut genotypes grown under 4 water regimes at the Georgia	
	Envirotron, GA, 2002.	
3.7	Peanut pod shell infection by Aspergillus flavus grown under 4	127
	different water regimes at a green house of the Georgia	
	Envirotron.	
3.8	Peanut seed infection by Aspergillus flavus grown under 4	128
	different water regimes at a green house of the Georgia	
	Envirotron.	
3.9	Colonization of pod shell and seed of three peanut genotypes by	131
	Aspergillus flavus as affected by inoculation and irrigation	
	methods. by Chiang Mai Unive	

xix

Table	Description of table	Page
3.10	Mean square error values from analyses of variance of	132
	condensed tannin (CT) and mineral element (Ca, Mg, Fe, Mn,	
	and Zn) contents in pod shell and seed coat of three peanut	
	genotypes as affected by inoculation and irrigation methods.	
3.11	Means of condensed tannin (CT) and mineral contents in pod	133
	shell and seed coat of non-inoculated and inoculated plant by	
	Aspergillus flavus.	
3.12	Means of condensed tannin (CT) and mineral contents in pod	133
	shell and seed coat of three peanut genotypes.	
3.13	Means of condensed tannin (CT) and mineral contents in pod	134
	shell and seed coat of peanut as affected by well-watered and	
	water-deficit conditions.	
3.14	Linear regression equations and coefficients between seed	135
	infection by Aspergillus flavus (%) and content of Mg and Mn in	
	seed coat (g kg ⁻¹) of three peanut genotypes ($n = 4$).	
3.15	Effects of inoculation and irrigation methods on crude protein	136
	and crude fat contents in the cotyledon of three peanut	
	genotypes.	

XX

ລິ<mark>ບສິກສົນหາວົກຍາລັຍເຮີຍວໃหມ່</mark> Copyright © by Chiang Mai University All rights reserved

LIST OF ILLUSTRATIONS

Figure	Description of figure	Page
1.1	Peanut plant (A) and peanut flower components (B).	9
1.2	Peanut harvest area, yield, and production trend in the world	10
	since 1961 to 2001.	
1.3	Peanut harvest area, yield, and production trend in Thailand	11
	since 1961 to 2001.	
2.1	Two peanut plants growing in 20-L containers, each fitted with a	49
	minirhizotron observation tube at 5 cm soil depth.	
2.2	Two peanut plants growing in a rhizotron (A) and schematic	59
	representation of subdivisions of transparent surface for image	
	acquisition (B).	
2.3	Effect of temperatures and CO ₂ concentrations on main stem	61
	length at different plant ages. Letters above each plant age	
	indicate significant differences (P≤0.05) between 25/15°C and	
	35/25°C temperature treatments, T; between CO ₂ levels (400,	
	600, 800 μ mol mol ⁻¹), C; and interaction between temperature	

Figure	Description of figure	Page
2.4	Effect of temperature and [CO ₂] of on individual leaf area (a)	62
	and leaf dry weight (b) at different plant ages. Letters above each	
	plant age indicate significant differences (P≤0.05) between	
	25/15°C and 35/25°C temperature treatments, T; between CO ₂	
	levels (400, 600, 800 μ mol mol ⁻¹), C; and interaction between	
	temperature and CO_2 , T × C.	
2.5	Relation between CO ₂ concentration and pod dry weight per	66
	plant of peanut at 25/15°C and 35/25°C.	
2.6	Total root length at different temperature regimes and CO ₂	66
	concentrations as observed by minirhizotron camera with	
	increasing days after planting. Letters indicated significant	
	effects of temperature (T), CO ₂ (C), and interaction between	
	temperature and CO ₂ (T × C), (P \leq 0.05).	
2.7	Effect of temperatures and CO ₂ concentrations on aerial peg	69
	infection by Aspergillus flavus observed at 85 DAP (a) and A.	
	<i>flavus</i> population in the soil at 85 days after planting (b). \Box =	
	25/15°C,	
2.8	Effects of temperature and CO ₂ concentration on number of first	73
	order branch roots generated from main root axis.	
	LSD (0.05) temperature = 8.89.	

xxiii

Figure	Description of figure	Page
2.9	Visible root length for different temperature regimes and CO ₂	73
	concentrations as observed by minirhizotron camera at different	
	days after planting. Letters indicate significant effects of	
	temperature (T), CO ₂ (C), and interaction between temperature	
	and CO2 (T × C), (P \leq 0.05).	
2.10	Effect of CO ₂ concentration and temperature on visible root	74
	length as measured by RMS in five 100-mm soil layers.	
2.11	Relationship between total root length washed from entire soil	74
	and visible root length at the transparent surface of rhizotrons at	
	17 DAP response to different temperature and CO ₂ regimes.	
3.1	Nine peanut plants growing in a 200-L cylindrical container	92
	(Dimension: 80 cm diameter \times 40 cm high), filled with sandy	
	loam soil with 1 plant hill ⁻¹ at a spacing of 20×25 cm.	
3.2	Soil moisture potential at three depths through 24 cycles for 3	101
	peanut genotypes. Water applied at each 3-to 4-day intervals	
	(T1).	
3.3	Soil moisture potential at three depths through 12 cycles for	102
	three peanut genotypes. Water applied at 7-day intervals (T2).	
3.4	Soil moisture potential at three depths through 6 cycles for three	SI 103
	peanut genotypes. Water applied at 14-day intervals (T3).	
3.5	Soil moisture potential at three depths through 4 cycles for three	104
	peanut genotypes. Water applied at 21-day intervals (T4).	

xxiv

Figure	Description of figure	Page
3.6	Leaflet numbers (A) and total leaf area (B) of Tainan 9 peanut	111
	genotype response to four water treatments, as measured by non-	
	destructive method at different plant ages.	
3.7	Leaflet numbers (A) and total leaf area (B) of 419CC peanut	112
	genotype response to four water treatments, as measured by non-	
	destructive method at different plant ages.	
3.8	Leaflet numbers (A) and total leaf area (B) of 511CC peanut	113
	genotype response to four water treatments, as measured by non-	
	destructive method at different plant ages.	
3.9	Main stem length of three peanut genotypes growing under four	114
	water treatments.	
3.10	Root length at four soil depth for three peanut genotypes	116
	growing under four water regimes; observed at 93 DAP.	
3.11	Root length at four soil depth for three peanut genotypes	117
	growing under four water regimes; observed at 79 DAP.	
3.12	Root length at four soil depth for three peanut genotypes	118
	growing under four water regimes; observed at 93 DAP.	
3.13	Root length at four soil depth for three peanut genotypes	120
	growing under four water regimes; observed at 107 DAP.	
	rights reserve	

XXV

Figure **Description of figure** Page 3.14 Root image as observed by a minirhizotron camera: (A) 125 observed with a white light and (B) observed with UV light. (C) Aspergillus flavus population density on roots as estimated by QuaCos. 3.15 Pod image as observed by a minirhizotron camera: (A) observed 126 with a white light and (B) observed with UV light. (C) Aspergillus flavus population density on pod as estimated by QuaCos. Three peanut genotypes growing in modified half-strength 153 Hoagland's solution of a hydroponic system at Lampang Agricultural Research and Training Center. Photomicrograph of peanut flower infection by GFP Aspergillus 155 4.2 flavus after staining with cotton blue in lactophenol and observed under light microscopy. A, Stigma (ST) and Pollen grains (PG) of noninoculated flower. B-D, Fungal hyphae (FH) growing on surface of stigma and colonized pollen grains at 24 hr after inoculation. Magnifications: A, ×100; B-D, ×200. Bright green fluorescent conidia (C) and fungal hyphae (FH) of GFP Aspergillus flavus observed with a UV-illuminating microscope. A-B, Conidia germinated and colonized pollen grains (PG) at 24 hr after inoculation. C, Conidia germinated on the tip of stigma (ST). **D**, Fungal hyphae growing on surface and

> colonizing surface of stigma at 48 hr after inoculation. Magnifications: A, ×200; B, ×400; C, ×400; D, ×100.

xxvii

Figure	Description of figure	Page
4.4	Fluorescence micrographs of GFP Aspergillus flavus growth on	157
	inoculated peanut flowers. A-J, Fungal hyphae penetrated	
	through the style of peanut (the same style but different	
	portions). K-M, Fluorescing hyphae occurred in the top of the	
	ovary and outside ovary surface 24 hr after inoculation. N,	
	Colonizing of fungal hyphae inside ovary tissue 48 hr after	
	inoculation. O, Network of fungal hyphae colonized the ovule	
	48 hr after inoculation. P-R, Conidia germinated on anther and	
	filament of peanut. Magnifications: A-M and P-Q, ×100; N-O,	
	×200.	
4.5	Floral infection by GFP Aspergillus flavus observed at 48 hr	159
	after inoculation. A, Sporulation of GFP A. flavus on hypanthia	
	cultured on selective medium. B, Conidiophores and conidia on	
	a peanut flower.	

All rights reserved

xxviii

ABBREVIATIONS

AAS	Atomic absorption spectrophotometry
Ca	Calcium
cc	Core collection number
СТ	Condensed tannin
[CO ₂]	Carbon dioxide concentrations
DAP	Days after planting
F	Inoculation treatment
Ft S	Inoculated plant
FO	Noninoculated plant
Fe	Iron
FAA	Formalin-acetic acid-alcohol
G	Genotype
GFP	Green fluorescent protein
Ι	Irrigation treatment
LA	Leaf area
LSD	Least significant difference
Mg	Magnesium
Mn	Manganese
PAC	Preharvest aflatoxin contamination
QuaCos	Quantitative Analysis of Color System
RH	Relative humidity

ລິ<mark>ບສິກລົ້ມກາວົກອາລັຍເຮີຍວໃหມ່</mark> Copyright © by Chiang Mai University All rights reserved

xxix