Table of Contents

Acknowledgements	iii
Abstract (Thai)	v
Abstract (English)	vii
List of Tables	xii
List of Figures	xiv
List of Appendices	xvi
List of Abbreviations	xvii
CHAPTER 1: Introduction	1
1.1 Statement and significance of the problem	2
1.2 Sustainability measurement	2
1.3 Research questions	3
1.4 Objectives	4
1.5 The scope of the study	4
CHAPTER 2: Litrature Review	5
2.1 Concept of sustainable agriculture	5
2.2 Indicators of sustainable agriculture	6
2.3 Sustainability assessment	8
2.3.1 Sustainability Assessment by Fuzzy Evaluation (SAFE)	9
2.3.2 Multi- criteria Evaluation (Amoeba approach)	10
2.3.3 Sustainability Indicator Analysis (SIA)	11
CHAPTER 3: Context of Yamethin District	12
3.1 Geographical and topographical conditions	12
3.2 Climate 8 m L S r e s e r v e	14
3.3 Soil	16
3.4 Water resources	17
3.5 Demographic conditions	18

3.6 Land use	19
3.7 Farming systems	20
3.8 Environmental problem	22
CHAPTER 4: Research Methods	23
4.1 Conceptual Framework	23
4.2 Determination of system of concern set of boundaries	23
4.3 Defined principles and goals	24
4.4 Choosing criteria and indicators	24
4.5 Sample area selection	27
4.5.1 Primary data collection	28
4.5.2 Secondary data collection	29
4.6 System analysis, Evaluation strategies and Sustainability assessment	29
4.6.1 Descriptive data analysis	30
4.6.2 Sustainability Assessment by Fuzzy Evaluation (SAFE)	30
4.6.3 Multi-criteria Evaluation (Amoeba approach)	37
4.6.4 Sustainability Indicator Analysis (SIA) method	40
CHAPTER 5: Results and Discussion	43
5.1 Soil fertility management	43
5.1.1 Use of chemical fertilizer	43
5.1.2 Use of organic fertilizer	45
5.1.3 Cultivation of legume crops	47
5.2 Pest and disease management	47
5.3 Land productivity	48
5.4 Yield stability	49
5.5 Profitability by Chiang Mai University	50
5.6 Input self sufficiency	51
5.7 Family food sufficiency	52
5.8 Sustainability Assessment by Fuzzy Evaluation (SAFE) method	55
5.8.1 Quantification and normalization of criteria	55
5.8.2 Fuzzification	58

60
61
66
67
67
68
72
74
75
79
79
82
86
94
113

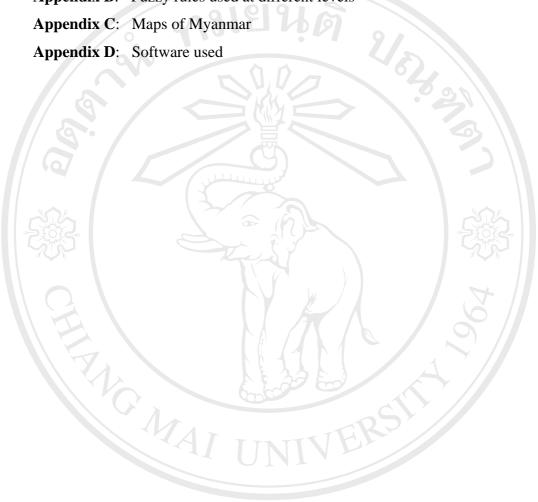
ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

List of Tables

Table		
1	Annual rainfall (2004) in the study area, Yamethin district,	
	Myanmar	
2	Demographic conditions in the study area, Yamethin District,	19
	Myanmar	
3	Land use condition in the study area, Yamethin district,	20
	Myanmar	
4	Indicator used to assess the sustainability of cropping systems	25
5	Matching table based on reference system in SIA method	41
6	Price comparison of rice and fertilizer (2004-2005)	44
7	Macronutrient composition of some organic wastes, amounts of	45
	nutrient added to soils when 2 t/ha of organic wastes are	
	applied.	
8	No. of farmers showing yield trend and Index of Trend of Yield	50
	in different cropping systems	
9	Gross revenue and Gross Margin in different cropping systems	51
10	Descriptive statistics of the study	54
11	Quantification of criteria for selected cropping systems	55
12	Normalization of sustainability indicators for the secondary	56
	variable (Sesame-Rice-Legume system)	
13	Normalization of sustainability indicators for the secondary	57
	variable (Rice-Rice system)	
14	Normalization of sustainability indicators for the secondary	58
	variable (Rice-Legume system)	
15	Overall sustainability measurement for selected cropping	64
	systems	

16	Output from sensitivity analysis with different confidence level	6
	for overall sustainability in (3) cropping systems	
17	Sensitivity of the SAFE model with respect to input variations	6
	in Sesame-rice-legume system	
18	Normalization of criteria/ indicators for selected cropping	6
	systems	
19	Calculation of weights (Wi) for indicators in overall	6
	sustainability	
20	The results of sustainability in MCE method	e
21	Sensitivity Analysis for weights on (3) components of	7
	sustainability	
22	Example of setting score from sampling household's data in	7
	Sesame-Rice-Legume system	
23	Computation of sustainability score for Sesame-Rice-Legume	2
	system	
24	Computation of sustainability score for Rice-Rice system	7
25	Computation of sustainability score for Rice-Legume system	7
26	Comparison of Performance Percentage for (3) cropping	-
	systems	
27	Comparison among the assessment methods in sustainability	8
B .1	Rule application for overall sustainability assessment (125	10
	Rules)	
B.2	Rule application for Environmental sustainability assessment	10
	(81 Rules)	
B.3	Rule application for Economic sustainability assessment (27	1(
	(Rules) O by Chiang Mai Unive	
B.4	Rule application for Social sustainability assessment (9 Rules)	1(

List of Figures


Figure		Page
1	Location of study area, Yamethin District in Myanmar	12
2	Monthly average rainfall (mm) in Yamethin District, 1994-2004	15
3	Major rice-based cropping patterns in Yamethin District	21
4	Conceptual frame work of the study	23
5	Boundaries established for agricultural sustainability	24
6	Interviewing farmers in Lewe Township (Sesame-Rice- Legume system)	28
7	Discussion with Yamethin district manager	29
8	Methodology for the Sustainability Assessment by Fuzzy Evaluation (SAFE)	31
9	Examples of normalization	34
10	Fuzzy Mamdani Inference over Indicator ISS and FFS for aggregation	35
11	Membership curves with different confidence level	37
12	Example of amoeba diagram representing comparison of two solutions, the best one is the furthest to the center, the one which maximize the indicators	40
13	Average chemical fertilizers usage of farmers in the cropping systems	44
	Average organic fertilizers usage of farmers in the cropping systems	46
Copyrig	Average cultivation of legumes of farmers in the cropping systems	rsity ⁴⁷
16	Proportion of farmers using chemical control in the cropping systems	e 0 ⁴⁸
17	Average rice yield (kg/ha) in the cropping systems	49
18	Input self sufficiency ratio for the cropping systems	52

19	Family food sufficiency (months/year) for the cropping	53		
	systems			
20	Membership functions for secondary variables	58		
21	Membership functions for primary variables and Osus			
22	Implication of fuzzy rules in overall sustainability assessment			
23	23 Implication of fuzzy rules in social sustainability assessment			
24 Graphical illustration of defuzzification of the fuzzy		62		
	conclusion for social sustainability			
25	Representation of sustainability assessment by Amoeba	73		
	diagram for selected cropping system			
26	Comparison of sustainability within cropping systems	77		
A.1	Fuzzy Mamdani Inference over Indicator ISS and FFS for	97		
	aggregation			
A.2	Defuzzification Process	98		
B.1	Number of Rules required at different levels of aggregation	100		
C.1	Administrative map of Myanmar	108		
C.2	Rainfall isohyets in Myanmar	109		
C.3	Isotherms in Myanmar	110		
C.4	Soils in Myanmar	111		

ລິບສິກສົ້ນກາວົກຍາລັຍເຮີຍວໃກມ Copyright © by Chiang Mai University All rights reserved

List of Appendices

- Appendix A: Fuzzy set theory & fuzzy logic concepts
- Appendix B: Fuzzy rules used at different levels
- Appendix C: Maps of Myanmar
- Appendix D: Software used

rights reserved

List of Abbreviations

0 ! !!	Degree-Minute-Second
°C	Degree of Celcius
%	Percent
a.m.s.l	Above mean sea level
km	Kilometer
Sq-km	Square Kilometer
m	Meter
cm	Centimeter
ha	hectare
kg	Kilogram
EM	Effective Microorganism
SAFE	Sustainability Assessment by Fuzzy Evaluation
MCE	Multi-criteria Evaluation
SIA	Sustainability Indicator Analysis
FL	Fuzzy Logic
MCDM	Multi-criteria Decision Making
N	Non-sustained
С	Conditional sustained
S	Sustained
NS	North-South
sw	South-West
NE	North-East
S-R-L	Sesame-Rice-Legume
R-R	Rice-Rice
R-L	Rice-Legume system
Kyat	Myanmar Currency Unit
Tsuper	Triple Superphosphate

Ν		Nitrogen
P		Phosphorus
K		Potassium
t/h		Ton/hectare
	FM	Number of Family Members
	FL	Number of Family Labors
TA		Total Area
	CF	Usage of Chemical Fertilizer
	OF	Usage of Organic fertilizer
	LC	Cultivation of Legume Crops
	Cuse	
		Chemical Control usage
C'		Crop Yield
	stab	Yield Stability
G		Gross Margin
G		Gross Revenue
IS		Input Self Sufficiency
FF		Family Food Sufficiency
CS		Cropping System
Μ		Membership Function
	rimf	Triangular Membership Function
Ga	aussmf	Gaussian Membership Function
EC	COLsus	Ecological Sustainability
EC	CONsus	Economical Sustainability
SC	DCsus	Social Sustainability
Os	sus	Overall Sustainability
C	si ght (Cropping System 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
C	S2	Cropping System 2
C	\$3	Cropping System 3
SI		Sustainability Index
Ec	quivalent:	1 USD= 900 Kyats (in 2004)
		1 basket= 20.8 kg