CHAPTER 4
RESULTS AND INTERPRETATION

4.1 Screening data

Many geochemical exploration, development, and production projects are
complex because of large numbers of samples. Therefore screening analysis should be
rapid and cheap. Large numbers of oil, rocks and/or sediments can be screened using
geochemical tools such as total organic carbon (TOC), Rock-Eval pyrolysis, Use of
these practical and less expensive methods allows non-source rocks to be identified
and oils and source rocks to be provisionally grouped into genetic families.

Screening analysis of this study is a determination of the sample in term of to-
tal organic carbon (TOC) content, total carbon (TC) content, and total sulphur (TS)
content. Rock-Eval analysis provided Si, S;, Tmax, hydrogen index (HI) and produc-
tion index (PI) (Appendix II). Together they provide general appraisal of sample cha-

racteristic.

Total organic carbon (TOC) content

Total organic carbon (TOC), also called organic carbon (Cor), is the amount
of organic carbon in a rock, expressed as weight percent, used to describe the quantity
of organic carbon in the rock sample and includes both kerogen and bitumen. In
general, TOC values more than 2 wt% in shale are regarded as good source rock. In
contrast, TOC values lower than 0.5 wt% have no petroleum generating potential
(Bordenave et al., 1993).

Total carbon (TC) content and total sulphur (TS) content

Total carbon is an amount of carbon in the rock, including both inorganic
(carbonate minerals) and organic carbon (aliphatic and aromatic compounds).

Total sulphur is a bulk of organic sulphur in the rock. Understanding the origin

of sulphur in petroleum and kerogen is necessary in order to make reliable
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interpretation of source input and depositional environment. High- and low-sulphur
crude oils analysed by LECO CS-200 induction furnace are derived from high- and
low- sulphur kerogens respectively (Gransch and Posthuma, 1974). High-sulphur ke-
rogen and oils originate from marine rocks deposited under highly reducing to anoxic

condion.

TOC/TS ratio

The weight ratio of total organic carbon (TOC) and total sulphur (TS)
(TOC/TS ratio, =C/S ratio) is an indicator for distinguishing the whether original en-
vironment of deposition of the oil source is under fresh water or marine condition, and
thus give a qualitative indication of the redox status of the environment of deposition
(Berner and Raiswell, 1983; 1984; Berner, 1989; Phillips and Bustin, 1996). High C/S
ratio (higher than 10) indicates the mainly oxic sediments in terrestrial depositional
environment. In contrast, low C/S ratio (lower than 5) can be an indicator of a greater
abundance of euxinic (oxygen-poor) basin environment. In addition, the C/S ratio in
the range from 5-10 corresponds to deposition under periodic anoxia condition (rang-

ing from oxic to anoxic environment).

The TOC/TS versus TOC plot

TOC/TS versus TOC plot can be used to determined condition of deposition of
source rocks. High C/S ratio (higher than 10) can be indicates the mainly oxic sedi-
ments in terrestrial depositional environment. In contrast, low C/S ratio (lower than 5)
can be an indicator that a greater abundance of euxinic (TOC/TS boundaries from
Berner and Raiswell, 1984).

Rock-Eval divided S;, S; and Tax

S is free hydrocarbons, oil and gas, contained in the organic matter, expressed
in mg HC/g rock. S; values less than 0.5 can be indicated no petroleum potential. S;
values between 0.5 and 1 can be indicated as fair potential. S; values between 1 and 2
can be indicated as good potential and between 2 and 4 can be indicated as very good

potential.
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S, corresponds to present potential of the rock sample and expressed in mg
HC/g rock. Most sediments have S, values lower than 2 mg HC/g rock. S; higher than
5 mg HC/g rock can be considered as fair potential sources (Bordenave et al., 1993).

Tmax(°C) is the oven temperature that corresponds to the maximum rate of the
S, hydrocarbon generation which varies as a function of the thermal maturity of the

organic matter.

Hydrogen index (HI)

The hydrogen index (HI) corresponds to the quantity of pyrolyzable organic
compounds from S, relative to the TOC. HI is defined as the ratio between S, ex-
pressed in mg HC/g rock and TOC expressed per weight of rock (Tissot and Welte,
1984). Source rock which HI values of less than 200 mg HC/ g TOC can be generated
gas. HI values 200 to 300 mg HC/g TOC can be generated mix oil and gas and HI
values more than 300 mg HC/g TOC can be generated oil (Peters and Moldowan,
1993; Peters et al., 2005).

Oxygen index (OI)

The oxygen index (Ol) corresponds to the quantity of carbon dioxide from S3
relative to the TOC. Ol is defined as the ratio between S; expressed in mg HC/g rock
and TOC expressed per weight of rock (Tissot and Welte, 1984). However, in re-
search Rock-Eval derided S; can not be measured because the CO, detector of Rock-

Eval 6 instrument is broken.

Production index (PI)
The Pl is S1/(S1+S,) ratio. The PI typically climbs from 0.1 to 0.4 from the be-

ginning to the end of the oil generation window (Tissot and Welte, 1984).

Rock-Eval divided Tax and Production index (PI)

Peters (1986) reported that Rock-Eval Tmax and production index (PI) values
less than 435°C and 0.1 respectively indicate an immature organic matter that has
generated little or no petroleum. A Tax greater than 470°C coincide with the wet-gas

generation zone. The PI values reach about 0.4 at the bottom of the oil window (be-
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ginning of the wet-gas zone) and increase to 1.0 when the hydrocarbon-generative

capacity of kerogen has been exhausted.

The S; yield against TOC cross plot

The potential of source rocks is determined by the S, yield against TOC cross
plot can be indicated as potential of source rocks. S, value less than 2 and TOC value
less than 0.5 can be interpreted as poor potential source rocks. S, value of 2-5 and
TOC value of 0.5-1 can be interpreted as fair potential source rocks. S, value of 5-20
and TOC value of 1-2 can be interpreted as good potential source rocks. S, value
more than 20 and TOC value more than 2 can be interpreted as excellent potential

source rocks.

The Hydrogen Index against Tmax plot

The hydrocarbon and kerogen types are classified by Hydrogen Index (HI, mg
HC/g TOC) against Tnax from Rock-Eval pyrolysis plot. This plot is used when the
oxygen index has not been determined. The four principal types of kerogen in sedi-
mentary rocks include type | (very oil-prone), Il (oil-prone), Il (gas-prone) and IV
(inert). Some discussions modify these definitions to include transitional kerogen

composition, such as type II/111 (mix oil- and gas-prone).

4.1.1 Results of Fang basin samples

The TOC content ranges from 0.19 to 2.22 wt%, averaging 1.39 wt%. The max-
imum and minimum TOC values are at depth 879.30 and 557.80 m, respectively. Be-
tween the depth of 879.30 and 998.20 m samples have high TOC contents (1.56 to 2.22
wt%). The TOC content of the samples are generally low, and about half of samples,
have TOC content higher than 1.5 wt%. The TC content varies between 0.76 to 6.2
wt% and averaging 2.39 wt%. The maximum and minimum TC values are at depth
544.10 and 557.80 m, respectively.The sulphur content (TS) is usually low and vary
between 0.06 to 0.68 wt%. The maximum and minimum TS values are at depth 1,015
m and 557.80 m, respectively (Table 4.1 and Figure 4.1).

Rock-Eval derived S; for Fang basin sample is quite low; vary from 0.01 to 0.20

mg HC/g rock. The maximum and minimum S; values are at depth 1060.7 and 544.10
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Figure 4.1 The plots of TOC content, TC content and TS content against depth show
variation of screening data and source rock quality of Fang-MS well (diagram modified

from Bordenave et al., 1993).
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m, respectively. S, yields vary from 0.17 to 9.51 mg HC/g rock. The maximum and
minimum S, values are at depth 879.3 and 557.8 m, respectively. S; yield is quite low
and less than 0.5 mg HC/g rock. In contrast, about 75 % of the samples have S, yield-
higher than 2.5 mg HC/ g rock. The HI ranges from 91 to 428 mg HC/g TOC. The max-
imum and minimum HI values are at depth 879.30 and 557.80 m, respectively (Table
4.1 and Figure 4.2). The 38 % of samples have HI values more than 300 mg HC/g
TOC. The Tmax values from all samples range from 419 to 436°C. The majority of the
samples have Tmax values above 425°C.The Pl is quite low and ranges from 0.01 to
0.07 and the maximum PI value is of depth 725.43 m (Table 4.1 and Figure 4.3).

4.1.2 Results of Na Hong basin

The TOC content of the samples are generally high and ranges from 5.75 to
57.43 wt%, averaging 25.51 wt%. All of the samples have TOC content higher than 5
wt%. The coaly mudstones show the highest TOC value reaching more than 40 wt %.
The TC content varies between 6.99 to 61.18 wt% and averaging 26.43 wt%. The sul-
phur content (TS) is varying from 0.31 to 16.79 wt%. Coaly mudstone contains maxi-
mum value of TOC, TC and TS contents while mudstone contains minimum value of
TOC, TC and TS contents. Oil shale contains TOC, TC and TS contents about 10 to 40,
10-40 and 1 to 14 wt%, respectively (Table 4.2).

Rock-Eval derived S; yields vary from 0.28 to 7.54 mg HC/g rock. About 75 %
of the sample have S; yield higher than 0.5 mg HC/g rock. The coaly mudstones show
the highest S; value reaching more than 3 mg HC/g rock. The S, yields vary from 10.42
to 175.66 mg HC/g rock. The S, yields more than 100 mg HC/g rock are contained in
coaly mudstone. HI ranges from 174 to 414 mg HC/g TOC. Half of the samples have
HI values more than 300 mg HC/g TOC. The Tnax values range from 410 to 432°C and
the PI values quite low and ranges from 0.01 to 0.07 (Table 4.2).

4.1.3 Results of Ban Pa Kha sub-basin, Li basin

The TOC content ranges from 3.28 to 29.84 wt%, averaging 16.56 wt%. The
maximum TOC content is contained in oil shale (Table 4.3). The TC content varies
between 5.22 and 32.13 wt%, and averaging 18.68 wt%. The maximum TC content is

also contained in oil shale (Table 4.3). The sulphur content (TS) is varying from 0.29
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Figure 4.2 The plots of S;, S; and HI against depth showing variation of screening da-
ta, source rock quality and petroleum generation potential of Fang-MS well (diagram

modified from Bordenave et al., 1993).
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Figure 4.3 The plots of Tnax and Pl against depth showing variation of screening data
and maturation of source rock of Fang-MS well (diagram modified from Bordenave et
al., 1993).
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to 1.46 wt%. The maximum TS content is contained in oil shale and minimum content
is contained in mudstone (Table 4.3).

Rock-Eval derived S; yields vary from 0.16 to 2.38 mg HC/g rock. The maxi-
mum S; yield is contained in oil shale and minimum yield is contained in mudstone
(Table 4.3). The S, yields vary from 13.47 to 181.11 mg HC/g rock. The S, yields
more than 100 mg HC/g rock are contained in oil shale (Table 4.3). The Hydrogen
Index (HI) ranges from 308 to 679 mg HC/g TOC. The HI values more than 500 mg
HC/g TOC is contained in oil shale (Table 4.3). The Ty Values of all samples range
from 415 to 439°C (Table 4.3). The PI values are quite low and range from 0.01 to
0.03 (Table 4.3).

4.1.4 Results of Mae Sot basin

The TOC content ranges from 17.36 to 31.20 wt%, averaging 23.79 wt% (Ta-
ble 4.4). The TC content varies between 19.19 and 33.88 wt%, and averaging 26.07
wt% (Table 4.4). The sulphur content (TS) is varying from 0.30 to 1.46 wt% (Table
4.4).

Rock-Eval derived S; yields vary from 3.42 to 5.35 mg HC/g rock (Table 4.4).
Half of the samples have S; yield higher tha 4 mg HC/g rock. The S, yields vary from
142.07 t0 219.01 mg HC/g rock (Table 4.4). The HI ranges from 760 to 831 mg HC/g
TOC (Table 4.4). The Tmax values from all samples range from 429 to 440°C. The PI

values are quite low and ranges from 0.02 to 0.03 (Table 4.4).

4.1.5 Results of P-SK well, Phitsanulok basin

The samples were collected from Yom, Pratu Tao and Lan Krabu Formations
between depths of 900 and 3,070 m of P-SK well in Sirikit oilfield, at 50 m interval.
Yom Formation is between depths of 950 and 1,450 m and dominated by sandstone,
claystone and siltstone. Pratu Tao Formation is between depths of 1,450 and 1,850 m
and dominated by claystone, sandstone and shale. Chum Saeng Formation is between
depths of 1,850 and 2,150 m and dominated by mudstone. Lan Krabu Formation is
between depths of 2,150 and 3,070 m and dominated by siltstone and sandstone and

mudstone.
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The TOC content ranges from 0.52 to 3.75 wt%, averaging 1.58 wt% (Table
4.5). The maximum TOC value is at depth of 2,075 m, in Chum Saeng Formation, and
minimum value is at depth of 1,825 m in Pratu Tao Formation. The TC content varies
between 1.56 and 4.65 wt%, and averaging 2.84 wt% (Table 4.5). The maximum TC
value is at depth of 2,075 m in Chum Saeng Formation and minimum value is at depth
of 1,825 m in Pratu Tao Formation. The TS content is varying from 0.19 to 0.85 wt%
(Table 4.5). The minimum TS value is at depth of 2,475 m in Lan Krabu Formation
and the maximum value is at depth of 925 m in Yom Formation (Figure 4.4).

Rock-Eval derived S; yields vary from 0.26 to 3.65 mg HC/g rock (Table 4.5).
The maximum S; value is at depth of 2,025 m in Chum Saeng Formation. The S; val-
ue is lowest in the Yom Formation. The S, yields vary from 1.43 to 19.61 mg HC/g
rock (Table 4.5). The maximum S, value is at depth of 2,075 m in Chum Saeng For-
mation. The HI ranges from 191 to 602 mg HC/g TOC (Table 4.5 and Figure 4.5).
The Tmax values from all samples range from 420° to 435°C and the PI ranges from
0.07 to 0.28 and the highest value is at depth 2,475 m in Lan Krabu Formation (Table
4.5 and Figure 4.6).

The Yom formation, TOC and TC value ranges from 0.78 to 1.23 wt % and
2.00 to 3.18 wt%, respectively. The TS value ranges from 0.33 to 0.85 wt%. The S;
and S yields range from 0.53 to 1.05 mg HC/g rock and 2.09 to 7.40 mg HC/g rock,
respectively. The HI value is range from 248 to 602 mg HC/g TOC. The Tmax and PI
value are range from 421 to 432°C and 0.07 to 0.26, respectively. TOC, TC, TS, S, S,
and P1 plots show unity data while TS, HI, Pl and T« plots show little of scatter data
(Figures 4.4, 4.5 and 4.6).

The Pratu Tao Formation, TOC value ranges from 0.52 to 1.01 wt %. The TC
value ranges from 1.56 to 2.78 wt% and the TS value ranges from 0.20 to 0.59 wt%.
The S; and S;, yields range from 0.26 to 0.92 mg HC/g rock and 1.43 to 4.45 mg HC/g
rock, respectively. The HI values range from 197 to 440 mg HC/g TOC. The Tnax and
PI values range from 420° to 425°C and 0.12 to 0.2, respectively. TOC, TC, TS, Sy, S>
and PI plots show unity data while TS, HI and Tnax plots show scatter data (Figures
4.4,4.5 and 4.6).

The Chum Saeng Formation, TOC value ranges from 1.42 to 3.75 wt %. The
TC value ranges from 2.21 to 4.65 wt% and the TS value ranges from 0.30 to 0.52
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Figure 4.4 The plots of TOC content, TC content and TS content against depth show
variation in screening data and source rock quality of P-SK well (diagram modified
from Bordenave et al., 1993).
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Figure 4.5 The plots of S;, S, and HI against depth show variation of screening data,
source rock quality and petroleum generation potential of P-SK well (diagram mod-

ified from Bordenave et al., 1993).
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Figure 4.6 The plots of Tnax and Pl against depth show variation of screening data
and maturation of source rock of P-SK well (diagram modified from Bordenave et al.,
1993).
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wt%. The S; and S; yields range from 0.95 to 3.65 mg HC/g rock and 5.05 to 19.61
mg HC/g rock, respectively. The HI value ranges from 324 to 508 mg HC/g TOC.The
Tmax and P1 values range from 427° to 434°C and 0.15 to 0.21, respectively. TS and PI
show little of scatter data while TOC, TC, HI, S;, S; and Tmax plots show more

scatter data (Figures 4.4, 4.5 and 4.6).

The Lan Krabu Formation, TOC value ranges from 1.30 to 2.63 wt %. The TC
value ranges from 1.97 to 3.66 wt% and the TS value ranges from 0.19 to 0.54 wt%.
The S; and S; yields range from 0.70 to 2.36 and 4.85 to 12.01 mg HC/g rock, respec-
tively. The HI values range from 223 to 501 mg HC/g TOC. The Tnax and Pl values
range from 424° to 433°C and 0.11 to 0.27, respectively. TOC, TC, TS, S, S,, Hl,
Tmax and P1 plots show scatter data (Figures 4.4, 4.5 and 4.6).

4.1.6 Results of Suphanburi Basin

SP1 well

The TOC content ranges from 0.02 to 6.78 wt%, averaging 1.29 wt% (Table
4.6). The maximum TOC value is at depth 1,537.5 m in Unit C and the minimum val-
ue is at depth 1,007.5 m in Unit D. The TC content varies between 1.27 and 9.85
wt%, and averaging 4.36 wt% (Table 4.6). The maximum TC value is at depth
1,537.5 m in Unit C and the minimum value is at depth 1,132.5 m in Unit D. The TS
is varying from 0.02 to 1.47 wt% (Table 4.6). The maximum TS value is at depth
2,112.5 m in Unit B and the minimum value is at depth 1,007.5 m in Unit D (Figure
4.7).

Rock-Eval derived S; yields vary from 0.01 to 1.24 mg HC/g rock (Table 4.6).
The maximum S; value is at depth of 1,967.5 m in Unit B. The S, yields vary from
0.01 to 41.58 mg HC/g rock (Table 4.6 and Figure 4.8). The maximum S, value is at
depth of 1,460 m in Unit C. The Hydrogen Index (HI) ranges from 22 to 623 mg
HC/g TOC (Table 4.6 and Figure 4.9). The Tnax Values from all samples range from
319° to 492°C and the PI values range from 0.01 to 0.67 (Table 4.6 and Figure 4.10).

Unit D, TOC value ranges from 0.02 to 0.24 wt %. The TC value ranges from
1.27 to 5.38 wt% and the TS value ranges from 0.02 to 0.12 wt%. The S; and S,
yields range from 0.01 to 0.19 and zero to 0.48 mg HC/g rock, respectively. The HI
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Figure 4.7 The plots of TOC content, TC content and TS content against depth show
variation of screening data and source rock quality of SP1 well (diagram modified

from Bordenave et al., 1993)
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Figure 4.8 The plots of S;, S, and HI against depth show variation of screening data,

source rock quality and petroleum generation potential of SP1 well (diagram modified

from Bordenave et al., 1993).
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Figure 4.9 The plots of Tnax and Pl against depth show variation of screening data
and maturation of source rock of SP1 well (diagram modified from Bordenave et al.,
1993).
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Figure 4.10 The plots of TOC content, TC content and TS content against depth show
variation of screening data and source rock quality of SP2 well (diagram modified

from Bordenave et al., 1993).
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values range from zero to 346 mg HC/g TOC. The Tnax and Pl values range from
315° to 444°C and zero to 0.67, respectively. TOC, S, and S, plots show unity da-
ta.TC and HI plots show little of scatter data. TS, Tmax and PI plots show more scatter
data.

Unit C, TOC value ranges from 0.48 to 6.78 wt %. The TC value ranges from
1.79 to 9.56 wt% and the TS value ranges from 0.06 to 0.79 wt%. The S; and S,
yields range from 0.01 to 0.40 and 0.41 to 41.58 mg HC/g rock, respectively. The HI
values range from 134 to 623 mg HC/g TOC. The Tmax and PI values range from 427°
to 437°C and 0.01 to 0.09, respectively. TOC, Sy, Sy, Pl and Tax plots show unity da-
ta while TC, TS and HI plots show scatter data.

Unit B, TOC value ranges from 0.48 to 3.32 wt %. The TC value ranges from
2.27 to 9.85 wt% and the TS value ranges from 0.18 to 1.47 wt%. The S; and S;
yields range from 0.01 to 1.24 and 0.69 to 26.30 mg HC/g rock, respectively. The HI
values range from 145 to 451 mg HC/g TOC. The T and Pl values range from 432°
to 444°C and 0.01 to 0.08, respectively. TOC, TC, TS, S3, S; and HI plots show scat-
ter data while Tyax and PI plots show unity data.

Unit A, TOC value ranges from 0.27 to 1.58 wt %. The TC value ranges from
4.17 to 7.76 wt% and the TS value ranges from 0.24 to 0.93 wt%. The S; and S;
yields range from 0.03 to 0.29 and 0.16 to 2.30 mg HC/g rock, respectively. The Hi
values range from 58 to 152 mg HC/g TOC. The Tmax and PI values range from 438°
to 492°C and 0.08 to 0.21, respectively. TOC, TC, TS, Sy, Sz, HI, Tmax and PI plots

show scatter data.

SP2 well

The samples were collected from Units A to D between depths of 1,000 to
2,095 m of SP2 well of U-thong oilfield, at 5 to 10 m interval. Unit D is between
depths 410 and 1,100 m. and dominated by thick non-calcareous mudstone interbed-
ded with thin sandstone and calcareous mudstone. Unit C is between depths 1,100 and
1,450 m. and dominated by mudstone with marlstone. Unit B is between depths 1,450
and 1,980 m and dominated by mudstone interbedded with sandstone and siltstone.
Unit A is between depths 1,980 and 2,100 m and dominated by mudstone interbeded

with sandstone.
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The TOC content ranges from 0.03 to 9.74 wt% (Table 4.7), averaging 2.21
wt%. The maximum TOC value is depth of 1,564 m from Unit B and the minimum
value is depth of 1,018 m in Unit D. The TC content varies between 0.65 and 12.70
wt% and averaging 4.54 wt% (Table 4.7). The maximum TC value is depth of 1,564
m in Unit B and the minimum value is depth of 2,015 m in Unit A. TS is varying from
0.03 to 1.11 wt% (Table 4.7). The maximum TS value is depth of 1,855 m in Unit B
and the minimum value is depth of 1,090 m in Unit D (Figure 4.10).

Rock-Eval derived S; yields vary from 0.01 to 4.16 mg HC/g rock (Table 4.7).
The maximum S; value is depth of 1,833.38 m in Unit B. The S, yields vary from
0.01 to 55.93 mg HC/g rock (Table 4.7). The maximum S, value is depth of 1,563.63
m in Unit B. HI ranges from 55 to 675 mg HC/g TOC (Table 4.7 and Figure 4.11).
The maximum HI value is depth of 1,517.91 m in Unit B. The Tnax values from all
samples range from 355 to 435°C and the Pl range from zero to 0.30 (Table 4.7 and
Figure 4.12).

Unit D, TOC value ranges from 0.03 to 0.24 wt %. The TC value ranges from
1.41 to 3.49 wt% and the TS value ranges from 0.03 to 0.06 wt%. The S; is zero. S,
yield range from 0.01 to 0.13 mg HC/g rock, respectively. The HI value ranges from
28 to 102 mg HC/g TOC. The Tmax and PI values range from 355° to 418°C and zero,
respectively. TOC, TC, TS, S, S,, HI and PI plots show utility data while Ty« plot
shows scatter data.

Unit C, TOC value ranges from 0.13 to 9.74 wt %. The TC value ranges from
2.24 to 12.70 wt% and the TS value ranges from 0.05 to 1.08 wt%. The S; and S;
yields range from zero to 1.17 and 0.11 to 55.93 mg HC/g rock, respectively. The HI
value ranges from 84 to 675 mg HC/g TOC. The Tmax and PI values range from 423°
to 437°C and zero to 0.04, respectively. S;, Tmax and PI plots show utility data while
TOC, TC, TS, S, and HI plots show scatter data.

Unit B, TOC value ranges from 1.49 to 4.00 wt %. The TC value ranges from
3.99 to 7.75 wt% and the TS value ranges from 0.37 to 0.82 wit%. The S; and S;
yields range from 0.06 to 0.52 and 5.99 to 24.79 mg HC/g rock, respectively. The HI
value ranges from 402 to 620 mg HC/g TOC. The Tax and PI values range from 431°
to 437°C and 0.01 to 0.03, respectively. TOC, TC, TS, S, Sy, HI and PI plots show

scatter data while Trmax plot shows utility data.
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Figure 4.11 The plots of S, S, and HI against depth show variation of screening data,

source rock quality and petroleum generation potential of SP2 well (diagram modified

from Bordenave et al., 1993).
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Unit A, TOC value ranges from 0.45 to 3.28 wt %. The TC value ranges from
0.65 to 8.75 wt% and the TS value ranges from 0.11 to 1.11 wi%. The S; and S;
yields range from 0.20 to 4.16 and 0.87 to 17.98 mg HC/g rock, respectively. The HI
values range from 284 to 573 mg HC/g TOC. The Tmax and Pl values range from 423°
to 435°C and 0.08 to 0.30, respectively. TOC, TC, TS, Si1, S, and Tmax plots show util-

ity data while HI and PI plots show scatter data.

4.2 n-Alkane distribution by gas chromatography

The peak area of gas chromatograms profile of the n-alkane (Appendix II) has
been used to calculate Pristane/Phytane ratio (Pr/Ph ratio), Pristane/nC,; and Phy-
tane/nCg, as an indicator for source of organic materials or depositional environment;
and Carbon Preference Index (CPI), as an indicator for thermal maturity of the source
rock (Table 4.8).

Pristane/Phytane ratio (Pr/Ph ratio)

Pristane is the Cyg regular isoprenoid hydrocarbon with chemical formula Cy9H4 and
phytane is the Cy isoprenoid hydrocarbon (CyoHasz). They are mainly de rived from
the side chain of the chlorophyll “a” and “b” in purple sulphur bacteria (Brook et al.,
1969; Powell and McKirdy, 1973). Phistane and phytane are ubiquitous in most oils
and sediment extracts. In gas chromatography pristine (Pr) and phytane (Ph) occur as
a distinctive doublet with normal C,; and Cyg alkane, respectively. The Pr/Ph ratio
was used as an indicator of oxicity of depositional environment (Miles, 1989). Didyk
et al (1978) proposed that the Pr/Ph ratio may be correlated with the environmental
conditions prevailing when the sediment was deposited.

Thus, sediments deposited in aquatic environments where both the water column
and sediment are anoxic generally have ratios much less than unity, whereas when
oxic conditions occur ratios much greater than unity are found. Ratios close to unity
are thought to occur when there are alternating oxic and anoxic conditions or when
the depth of the oxic-anoxic interface fluctuates. Anoxic conditions tend to preserve
the C,p skelleton whereas oxic conditions cause greater degradation. Thus, phytane

is presumed to be formed from phytol by several reductive pathways whereas
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oxidation of phytol to phytanic and/or phytenic acid is considered to be a prerequisite

for pritane formation (Johns, 1986).

Pristane/nC,7; and Phytane/nCig

The abundance of pristine relative to nC;; and the relation between phytane
and nCyg can be determined from gas chromatography of oils and sediment extracts.
The ratios of Pristane/nCy7 and Phytane/nCyg are often used as indicator of deposi-
tional environment and to indicate approximate levels of maturity and biodegradation.

Carbon Preference Index (CPI)

The relative abundance of odd carbon n-alkanes versus even number n-
alkanes measured from gas chromatography of saturated fraction of an oil or extract
is know as the carbon preference index (CPI), which can be used to estimate of
thermal maturity of petroleum. The predominance of odd-number alkanes decrease
with increasing maturity, where even and odd alkanes are present at equal amounts,
i.e. an index of 1.0. Hence a high CPI,> 1.1, means that an oil or extract is imma-
ture. Generally, the CPI value of 1.5 is considered to be at the top of oil generative
window, while a value of 1.0 £0.1 is considered to be at peak oil generation (Miles,
1989). The full range of carbon numbers which have been included in these calcula-
tions is 20 to 34, but most analysts prefer to use a more restricted range. The most

widely CPI was calculated from below formula (Bray and Evans, 1961):

CPI =%[(Cgs + Co7 + Co9 + Cz1 + Cg3) + (Co5 + Co7 + Cog + Cz1 + Cgs)]
(Casa+ Coe+Cog+ C30+ C3p) (Co6+ Cog+ Csp+ Csp + Caa)

4.2.1 Fang-MS well, Fang basin

The samples of Fang-MS well have n-alkanes distributions in molecular
weight range from nCy3 - nCzg and maximize in the nC,7, nCy and nCs;. The Pr/Ph
ratio ranges from 1.5 to 3.02. The Pristane/nCy; and Phytane/nCig ratio range from
1.79to 3.15 and 0.93 to 1.31, respectively. The CPI ranges from 1.31 to 1.40



108

4.2.2 Na Hong basin

The samples of Na Hong have n-alkanes distributions in molecular weight
range from nCj; - nCzg and maximize in the nCy;, nCy and nCs;. The Pr/Ph ratio
ranges from 0.46 to 1.13. The Pristane/nC;7 and Phytane/nCgg ratio range from 2.58 to
5.18 and 2.66 to 15.59, respectively. The CPI ranges from 3.24 to 5.10.

4.2.3 Li basin

The samples of Li have n-alkanes distributions in molecular weight range
from nCy, - nCz; and maximize in the nC,7, NCy and nCs;. The Pr/Ph ratio ranges
from 1.66 to 1.71. The Pristane/nC,7; and Phytane/nC,g ratio range from 3.70 to 5.91
and 3.23 to 4.73, respectively. The CPI ranges from 2.47 to 3.05.

4.2.4 Mae Sot basin

The samples of Mae Sot have n-alkanes distributions in molecular weight
range from nCjyo - nCsg and maximize in the nC,; and nCyg. The Pr/Ph ratio ranges
from 0.42 to 0.55. The Pristane/nC,7 and Phytane/nCig ratio range from 1.00 to 1.42
and 5.24 to 5.33, respectively. The CPI ranges from 2.48 to 2.55.

4.2.5 P-SK well, Phitsanulok basin

The samples of PH have n-alkanes distributions in molecular weight range
from nCyp - nC3¢ and maximize in the nCys and nCy7. The Pr/Ph ratio ranges from 0.85
to 1.63. The Pristane/nCy7 and Phytane/nCig ratio range from 1.58 to 0.88 and 0.42 to
0.65, respectively. The CPI ranges from 0.99 to 1.06.

4.2.6 SP1 and SP2 wells, Suphanburi basin

SP1 well

The samples of SP1 have n-alkanes distributions in molecular weight range
from nC,3 — nC4 and maximize in the nC,; to nCs;. The Pr/Ph ratio ranges from 0.93
to 3.74. The Pristane/nCy; and Phytane/nCg ratio range from 1.31 to 2.95 and 0.32 to
1.88, respectively. The CPI ranges from 0.98 to 1.16.
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SP2 well

The samples of SP2 have n-alkanes distributions in molecular weight range
from nCy3 - nC3 and maximize in the nCs;. The Pr/Ph ratio ranges from 0.70 to 2.56.
The Pristane/nC;; and Phytane/nCsg ratio range from 1.08 to 2.79 and 0.73 to 1.51,
respectively. The CPI ranges from 0.93 to 1.21.

4.3 Biomarkers parameters: Gas Chromatography-Mass Spectrometer
Biomarkers are a group of compounds, primarily hydrocarbons, found in oil,
rock extracts, recent sediment extracts and soil extracts. Biomarkers are structurally
similar to, and are diagenetic alteration products of, specific natural products (com-
pounds produced by living organisms). Specifically, biomarkers in oil can reveal the
relative amount of oil-prone and gas-prone organic matter in the source kerogen, the
age of the source rock, the environment of deposition as marine, lacustrine, fluvio-
deltaic or hypersaline, the lithology of the source (carbonate and shale) and the ther-
mal maturity of the source rock during generation (Peters and Moldowan, 1993). The
peak area of gas chromatograms-mass spectrometer profile has been used to calculate

biomarker parameters.

Homohopane isomerization [22S/ (225+22R)] ratio

Isomerization at C-22 in the C3;-C3s 17a-hopane (Ensminger et al., 1977) oc-
cur earlier than many biomarker reactions used to assess the thermal maturity of oil
and bitumen for immature to early oil generation, such as isomerization at C-20 in the
regular steranes, measured using m/z 191 chromatogram or GCMS/MS typically the
Ca1 or Cgy. Schoell et al., (1983) showed that equilibrium for the C3, hopanes occurs
at vitrinite reflectance of ~0.5 % in Mahakam Delta rocks. The biologicall produced
hopane precursors carry a 22R configuration that is converted gradually to a mixture
of 22R and 22S diastereomers. The proportions of 22R and 22S can be calculated for
any or all of the C3;-C3zs compounds. These 22R and 22S doublets in the range C31-Css
on the m/z 191 mass chromatogram are called homohopanes.

The 22S/(22S+22R) ratios for the C31-Css 17a- homohopane may differ
slightly. Typically, the C-22 epimer ratios increase slightly for the higher homologs

from Cs3;-Css. For example, Zumberge (1987) calculated the average equilibrium
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22S/(225+22R) ratio for 27 low-maturity oils at Cs;, C3z, Cas, Ca4, and Css to be 0.55,
0.58, 0.60, 0.62, and 0.59, respectively.

Ts/(Ts+Tm)

Thermal parameter based on relative stability of C,; hopane applicable over
the range immature to mature to postmature. The ratio of trisnorneohopane (Ts or
18a-22, 29, 30-trisneohopane), formular C,7Hye, to trisnorhopane (Tm or 17a-22, 29,
30-trinorhopane) is calculated from relative peak areas of both Ts and Tm in the m/z
191 mass chromatogram or GCMS/MS (m/z 370—191) (Appendix V). During cata-
genesis, C,7 17a-Trisnorhopane (Tm) is less stable than C,g 18a-trinorhopane Il (Ts)
(Seifert and Moldowan, 1978; Kolaczkowska et al., 1990).

Cyg aaa 20S/(20S+20R) sterane epimer ratio

The sterane isomerization ratios are reported most often for the C,9 com-
pounds (24-ethylcholestanes or stigmastanes) due to the ease of analysis using m/z
217 mass chromatograms. Isomerization ratio based on the C,; and Cyg Steranes
commonly show interference by coelution peaks. However, GCMS/MS measurements
allow reasonably good accuracy for C,7, Cog and Cy9 20S/(20S+20R), all of which
have equivalent potential as maturity parameters when measured by this method.

The elution patterns for steranes are highly complex because of an overlap of
rearranged and non-rearranged steranes. Although in principle we could determine
maturity by following the change in 20S/(20S+20R) in any of the C,7, Cyg or Cyg Ste-
ranes, measured using m/z 217 mass chromatogram. The most accurate data is derived
from Cy9 species which are the least susceptible form is exclusive the aao(20R) and
Baa(20R) configurations. Isomerization at C-20 in the Cy9 S0, 14a, 170 (H)-sterane
causes 20S/(20S+20R) to rise from 0 to ~0.5 with increasing thermal maturity (Seifert
and Moldowan, 1978).

Co9 (SHR)uppB/((StR)app+(S+R)aaa) sterane ratio
Cx BB/ (BB+aa) sterane ratio is proportion of 148 (H), 17 (H) and 140 (H), 170
(H) forms. The aa form is produced biologically but gradually converts to a mixture

of aa and Bp. This transformation involves the poorly understood but apparently
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nearly simultaneous change of two hydrogen atoms from alpha positions to beta.
Measured is using peak area of m/z 217 or preferable by GCMS/MS of C,g Sterane
(Seifert and Moldowan, 1978).

C,7-Cy9 regular steranes

The steranes inherited directly from higher plants, animals, and algae are the
20R epimers of the Sa (H), 14a (H), 170 (H) forms of the Cy7, Cog, Cyg Steranes. The
relative proportions of each of these “regular” steranes can very greatly from sample
to sample, however, depending upon the type of organic material contributing to the
sediment. The ratio of C,7: Cog: Cyg represents a composite of the data for oil or ex-

tracts of the source rock from various depositional environments (Miles, 1989).

4.3.1 Fang-MS well, Fang basin

The ratio of 22S/ (225+2R) of Fang-MS samples range from 0.2 to 0.6 and
Ts/(Ts+Tm) ratio ranges from 0.2 to 0.36. The Cy 20S/ (20S+20R) sterane epimer
and C,y BB/(BP+ac) Sterane ratio range from 0.08 to 0.23 and 0.35 to 0.36, respectively.
The samples are dominated by Cog sterane, except sample 11876 is dominated by C,;
sterane (Table 4.9).

4.3.2 Na Hong basin

The ratio of 22S/(225+2R) of Na Hong samples range from 0.04 to 0.05 and
Ts/(Ts+Tm) ratio ranges from 0 to 0.04. The Cy9 20S/(20S+20R) sterane epimer and
Co BB/(BB+aa) Sterane ratio are not present. The samples are dominated by Cog sterane
(Table 4.9).

4.3.3 Li basin

The ratio of 22S/(225+2R) of Li samples is 0.04 and Ts/(Ts+Tm) ratio is 0.05.
The Cy9 20S/(20S+20R) sterane epimer and C,o BB/(BB+aa) Sterane ratio range from 0
to 0.22 and 0 to 0.43, respectively. The samples are dominated by C,g sterane (Table
4.9).
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4.3.4 Mae Sot basin

The ratio of 22S5/(22S+2R) of Mae Sot samples range from 0.23 to 0.26 and
Ts/(Ts+Tm) ratio ranges from 0.03 to 0.04. The C,9 20S/(20S+20R) sterane epimer
ratio range from 0.07 to 0.11. The samples are dominated by C,g Sterane (Table 4.9).

4.3.5 PH, Phitsanulok basin
The ratio of 225/(22S+2R) of PH samples range from 0.51 to 0.57 and Ts/(Ts+Tm)
ratio ranges from 0.21 to 0.36. The C,9 20S/ (20S+20R) sterane epimer and C,
BB/(Bp+aa) sterane ratio range from 0.298 to 0.35 and 0.30 to 0.32, respectively. The

samples are dominated by C,g sterane (Table 4.9).

4.3.6 SP1 and SP2 wells, Suphanburi basin

SP1 well

The ratio of 22S/(22S+2R) of SP1 samples range from 0.3 to 0.61 and Ts/
(Ts+Tm) ratio ranges from 0.26 to 0.74. The Cy9 20S/(20S+20R) sterane epimer and
Ca9 BB/(BB+aa) sterane ratio range from 0 to 0.51 and 0.29 to 055, respectively. The

samples are dominated by C,q sterane (Table 4.9).

SP2 well

The ratio of 22S/(22S+2R) of SP2 samples range from 0.27 to 0.58 and
Ts/(Ts+Tm) ratio ranges from 0.13 to 0.44. The Cy9 20S/ (20S+20R) sterane epimer
and Cy BPR/(BB+ac) sterane ratio range from 0 to 0.14 and 0 to 0.05, respectively. The
samples are dominated by C,7 and Cyq sterane (Table 4.9).

4.4 Organic petrographic results

Macerals are organic substances derived from plant tissues, cell contents and
exudates that were variably subjected to decay, incorporated in to sedimentary strata
and then altered physically and chemically by natural processes (diagenetic and me-
tamorphic). There are three basic groups of macerals, the vitrinite group derived from
coalified woody tissue, the liptinite group derived from the resinous and waxy parts of
plants and the inertinite group derived from charred and biologically altered plant cell

wall material.
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Vitrinite reflectance

Vitrinite reflectance data is widely used to determine the thermal maturity of
maceral in sedimentary rocks (Bostick, 1979). It is more related to the thermal stress
experienced by the vitrinite than to petroleum generation. The value of 0.45 to
0.6%R, have been suggested for onset of hydrocarbon generation (Ammosov, 1968;
Hood et al., 1975) and the end of oil window at 1.3 to 1.5%R, (Shinbaoka et al.,
1973; Stach, 1975).

4.4.1 Fang-MS well, Fang basin

The macerals of the sample from the Fang-MS well are given in Table 4.10.
The liptinite content ranges from 69.60 to 78.20 percent. The liptinitic material is
principally composed of lamalginite, litodetrinite, telalginite, fluorescing amorphous
organic matter (AOM), exsudatinite, sporinite, cutinite and resinite (Figures 4.13,
4.14, 415, 4.16 and 4.17). The huminite content ranges from 8.50 to 12.3 percent.
The inertinite content ranges from 0 to 2.4 percent (Figure 4.18). The non-fluorescing
mineral matter content ranges from 9.2 to 17.3 percent and pyrite content is around 2
percent (Figure 4.19).

In all samples, the fluorescence properties of liptinite showed a range of yel-
lowish orange to yellowish brown. The liptinite and telalginite are most common and
easily recognizable. The lamalginite show laminated and filamentous morphology and
telalginite (Botryococcus) generally show sheet-like and disc-shaped forms. Under
fluorescence-inducing blue light, they display yellow to yellowish brown. In ground-
mass of all samples, the fluorescing AOM is found associated with liptodetrinite and
non-fluorescing mineral matter. The fluorescing AOM considered to be derived from
alginite and is generally irregular morphology and in fluorescence-inducing blue light
display orange to orange brown colour. The liptodetrinites are small fragments (<0.01
mm.) and also considered to be derived from alginite. They display dark yellow to
yellowish brown color. The sporinite generally display yellow color and present in
some of samples. The cutinite is also display yellow color and present in the top of
well. The exsudatinite, representing early generated heavy petroleum, display yellow
to yellowish brown color and present in some samples. The resinite display yellowish

orange color and present in some samples.
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50 um

Figure 4.13 Photomicrographs of filamentous lamalginite (FLA), exsudatinite (Ex)
surrounding quartz grain (Qtz) and framboidal pyrite (Py) of sample 11859 (588.30
m) from Fang-MS well in cross polarize light (A) and in fluorescence-inducing blue
light (B).
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Figure 4.14 Photomicrographs of Botryococcus-type telalginite (Bo) and huminite
fracments (Hum) in groundmass of yellowish brown fluorescing amorphous organic
matter (AOM) and liptodetrinite (Lip) of sample 11859 (588.30 m) from Fang-MS

well in cross polarize light (A) and in fluorescence-inducing blue light (B).
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Figure 4.15 Photomicrographs of gelinite (Gel), cutinite (Cu), resinite (Re) and exsu-
datinite (Ex) intruded into cleats of gelinite of sample 11861 (618.70 m) from Fang-
MS well in white light (A) and in fluorescence -inducing blue light (B).
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Figure 4.16 Photomicrograph of resinite (Re) and lamalginite (Lam) display yello-
wish orange color in fluorescence-inducing blue light of sample 11871 (786.40 m)

from Fang-MS well.

Figure 4.17 Photomicrograph of association of disc-shaped Botryococcus-type telal-
ginite (Bo) and lamalginite (Lam) in groundmass of weakly brownish florescing
amorphous organic matter and liptodetrinite in fluorescence-inducing blue light of
sample 11871 (786.40 m) from Fang-MS well.
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Figure 4.18 Photomicrograph of exsudatinite (Ex) surrounding quartz (Qtz) grains
and displays greenish yellow color and Botryococcus? (Bo?) in fluorescence-inducing
blue light of sample 11876 (879.30 m) from Fang-MS well.

v R

Figure 4.19 Photomicrograph of framboidal pyrite (Py) in humic coal (Hum) in white
light of sample 11882 (984.5 m) from Fang-MS well.
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Random reflectance data (% R,) determined from eleven cutting samples from
Mae Sot formation range from 0.38% to 0.66% R, (Table 4.10).

4.4.2 Na Hong basin

The macerals of the sample from the Na Hong are given in the Table 4.11. The
liptinite content ranges from 59.0 to 80.1 percent. The liptinitic material is principally
composed of lamalginite, liptodetrinite, telalginite, resinite, fluorescing AOM, spori-
nite, exsudatinite and cutinite (Figures 4.20). The huminite content ranges from 6.8 to
28.9 percent. The huminite composed of dentinite and gelinite (Figure 4.26, 4.21,
4.22, 4.23, 4.24 and 4.25). The inertinite content does not exceed 1 percent in all sam-
ples. The non-fluorescing mineral matter content ranges from 6.4 to 8.3 percent and
pyrite content is around 5 percent.

Sample 14714 of oil shale, shows the hightest proportion of filamentous la-
malginite and telalginite, predominantly with morphology similar to the extant algae
Botryococcus. Under fluorescence-inducing blue light, they display yellow to yello-
wish orange. In groundmass, the fluorescing AOM is found associated with liptoden-
trinite and mineral matter. The fluorescing AOM is considered to be derived from
alginite and is generally irregular in form. In fluorescence-inducing blue light they
display orange to orange brown color. The liptodentrinites display dark yellow to yel-
lowish brown color. The sporinite generally display yellow color.

Samples 14709, 14712 and 14719 of coaly mudstone, show high proportion of
huminite content which composed of dentinite and gelinite. Early generated heavy
bitumen or hydrocarbons (exsudatinite) have been observed in all coaly mudstone
samples. Random reflectance data (% R,) determined from four samples from Na
Hong range from 0.40% to 0.49% R, (Table 4.11).

4.4.3 Li basin
The macerals of the sample from the Li are given in the Table 4.11.
The liptinite content ranges from 70.6 to 80.6 percent. The liptinitic material is princi-
pally composed of lamalginite, fluorescing amorphous organic matter, telalginite, lip-
todentrinite, sporinite and exsudatinite (Figures 4.26 and 4.27). The huminite content

ranges from 6.7 to 9.1 percent (Figures 4.26 and 4.27). The inertinite maceral is
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Figure 4.20 Photomicrographs of association of disc-shaped Botryococcus-type telal-
ginite (Bo) and lamalginite (Lam) in groundmass of fluorescing amorphous organic
matter and liptodetrinite of sample 14714 from Na Hong basin in cross polarize light

(A) and in fluorescence-inducing blue light (B).
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Figure 4.21 Photomicrographs of association of disc-shaped Botryococcus-type telal-
ginite (Bo) and lamalginite (Lam) in groundmass of fluorescing amorphous organic
matter and liptodetrinite; exsudatinite (Ex) filled in pore of fusinite (Fu) layer of sam-
ple 14714 from Na Hong basin in white light (A) and in fluorescence-inducing blue
light (B).
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Figure 4.22 Photomicrographs of resinite (Re), sporinite (Sp), liptodetrinite (Lip) and
cutinite (Cu) in densinite (Den) and gelinite (Gel) groundmass in sample 14709 from

Na Hong basin in white light (A) and in fluorescence-inducing blue light (B).
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Figure 4.23 Photomicrographs of resinite (Re), sporinite (Sp), exsudatinite (Ex) and
framboidal pyrite (Py) in densinite (Den) groundmass in sample 14709 from Na Hong

basin in white light (A) and in fluorescence-inducing blue light (B).
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Figure 4.24 Photomicrographs of lamalginite (Lam), exsudatinite (Ex) and cutinite
(Cu) in dentinite groundmass of sample 14719 from Na Hong basin, in white light (A)

and white color in fluoresceence-inducing blue light (B).
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Figure 4.25 Photomicrographs of lamalginite (Lam), sporinite (Sp), exsudatinite (Ex)
filled in pore of fusinite (Fu) and framboidal pyrite (Py) in densinite groundmass of
sample 14712 from Na Hong basin in white light (A) and in fluorescence-inducing

blue light (B).
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Figure 4.26 Photomicrographs of lamalginite (Lam) and resinite (Re) in densinite
(Den) groundmass of sample 14719 from Na Hong basin in white light (A) and in flu-
orescence-inducing blue light (B).
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Figure 4.27 Photomicrographs of exsudatinite (Ex) in huminite (Hum) and associa-
tion of disc-shaped Botryococcus-type telalginite (Bo), lamalginite and pyrite (Py) in
groundmass of fluorescing amorphous organic matter and liptodetrinite of sample
14690 Ban Pa Kha subbasin, Li basin in white light (A) in fluorescence-inducing blue
light (B).
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Figure 4.28 Photomicrographs of gelinite huminite (Hum) with exsudatinite in cleates
and association of disc-shaped Botryococcus-type telalginite and lamalginite in
groundmass of fluorescing amorphous organic matter and liptodetrinite of sample
14693 from Li basin in white light (A) in fluorescence-inducing blue light (B).
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absent. The non fluorescing mineral matter content range from 11.9 to 12.8 percent
and pyrite is 5.8 to 8.7 percent (Figure 4.29).

In all samples, the lamalginite show laminated and filamentous morphology
and telalginite (Botryococcus) generally show sheet-like and disc shaped forms. Un-
der fluorescence-inducing blue light, they display yellow to yellowish brown.

In groundmass of all samples, the fluorescing AOM is found associated with
liptodetrinite and non fluoresing mineral matter. The Fluorescing AOM considered to
be derived from alginite and is generally irregular morphology and in fluorescing-
inducing blue light display orange to orange brown color. The liptodetrinites also con-
sidered to be derived from alginite. They display dark yellow to yellowish brown
color. The sporinite generally display yellow color and present in all samples.

Random reflectance data (% R,) determined from three samples from Li basin
range from 0.36% to 0.40% R, (Table 4.11).

4.4.4 Mae Sot basin

The macerals of the sample from the Mae Sot basin are given in the Table
4.12. The liptinite content is high proportion (~ 87 percent). The liptinitic material is
principally composed of laminated lamalginite, fluorescing amorphous organic mat-
ter, telalginite, predominantly with morphology similar to the extant algae Botryococ-
cus, liptodetrinite (Figures 4.30, 4.31 and 4.32). The huminite content ranges from 1.8
to 2.6 percent (Figure 4.33). The inertinite group is absent. The non-fluorescing min-
eral matter content ranges from 9.2 to 9.7 percent. Pyrite content is from 1.9 to 2.1
percent.

Sample 14700 is characterized by having high proportions laminated lamalgi-
nite (up to ~ 64 %), compact structurelass fluorescing AOM and small amount of lip-
todetrinite but no telalginite. In sample 14702 telalginite and liptodetrinite are found
in small amount. Under fluorescence-inducing blue light, the laminated lamalginite
display yellowish orange color while telalginite display yellow color. The fluorescing
AOM and liptodetrinite display yellowish brown and considered to be derived from

lamalginite.
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Figure 4.29 Photomicrographs of framboidal pyrite (Py) and association of disc-
shaped Botryococcus-type telalginite (Bo) and lamalginite in groundmass of fluoresc-
ing amorphous organic matter and liptodetrinite of sample 14693 from Li basin in

cross polarize light (A) and in fluorescence-inducing blue light (B).
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Figure 4.30 Photomicrographs of framboidal pyrite (Py) (white in polarize light and
black in blue light) in homogeneous AOM which considered mainly to be derived
from alginite of sample 14700 from Mae Sot basin in cross polarize light (A); in fluo-

rescence-inducing blue light (B).
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Figure 4.31 Photomicrographs of homogeneous AOM which considered mainly to be
derived from alginite of sample 14700 from Mae Sot basin in cross polarize light (A);
in fluorescence-inducing blue light (B).
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Figure 4.32 Photomicrographs of disc-shaped Botryococcus-type telalginite (Bo) in
pyrite (Py) rich liptodetrinite groundmass of sample 14702 from Mae Sot basin in

cross polarize light (A) in fluorescence-inducing blue light (B).
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Figure 4.33 Photomicrographs of disc-shaped Botryococcus-type telalginite (B) in
liptodetrinite groundmass and exsudatinite (Ex) filled in pore of funginite (Fun) of
sample 14702 from Mae Sot basin in white light (A); in fluorescence-inducing blue
light (B).
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composed of laminated lamalginite, liptodetrinite, fluorescing amorphous organic
matter, exsudatinite, telalginite, predominantly with morphology similar to theextant

Random reflectance data (% R,) determined from two samples from Mae Sot
samples are 0.35% and 0.37% R, (Table 4.11).

4.4.5 P-SK well, Phitsanulok basin

The macerals of samples from the P-SK well are given in Table 4.12. The lip-
tinite content ranges from 45.30 to 79.40 percent. The liptinitic material is principally
composed of exsudatinite, fluorescing amorphous organic matter, liptodetrinite, lami-
nated lamalginite, telalginite, predominantly with morphology similar to the extant
algae Botryococcus, resinite, and sporinite (Figures 4.34, 4.35 4.36 and 4.37). The
huminite content ranges from 4.9 to 9.4 percent (Figures 4.38, 4.39 and 4.40). The
inertinite content is absent (Figure 4.41). The non-fluorescing mineral matter content
ranges from 14.4 to 43.70 percent. Pyrite content is from 2.1 to 3.5 percent (Figure
4.42). In sample 14728, 14732 and 14737 show high proportion of exsudationite con-
tent (~ 30 %) and followed by fluorescing AOM and resinite. The lamalginite, telalgi-
nite and liptodetrinite are absent.

Other samples show high proportion of liptodetrinite, laminated and filament-
ous morphology lamalginite, fluorescing AOM and followed by telalginite. Resinite
presents in some samples. The sporinite is only present in sample 14755. Cutinite is
absent. Under fluorescence-inducing blue light, the exsudatinite displays pale yellow
to yellowish orange color. The fluorescing AOM and liptodetrinite display yellowish
brown color. The lamalginite displays yellowish orange color and telalginite displays
yellow color in blue light. The resinite displays yellowish brown while sporinite dis-

plays yellow to yellowish orange color.

4.4.6 Suphanburi basin

SP1 well

Random reflectance data (% R,) determined from ten samples from P-SK
range from 0.40% and 0.66% R, (Table 4.13).
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Figure 4.34 Photomicrographs of disc-shaped Botryococcus-type telalginite (Bo) in
liptodetrinite and fluorescing amorphous organic matter groundmass of sample 14742

from P-SK well in cross polarize light (A); in fluorescence-inducing blue light (B).
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Figure 4.35 Photomicrographs of filamentous lamalginite (Lam) in liptodetrinite and
fluorescing amorphous organic matter groundmass of sample 14745 from from P-SK
well in fluorescence-inducing blue light (A and B). Greenish fluorescing lines are ex-

sudationite (Ex) of low number carbon chain.
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Figure 4.36 Photomicrograph of cutinite (Cu) and resinite (Re) in the groundmass of
Botryococcus algae of sample 14755 from P-SK well in fluorescence-inducing blue
light.

Figure 4.37 Photomicrograph of resinite (Re) and exsudatinite (Ex) expelled into
cleats of huminite of sample 14737 from P-SK well in fluorescence-inducing blue
light.
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Figure 4.38 Photomicrographs of exsudatinite (Ex) intruded into cleats of huminite of
sample 14728 from P-SK well in cross polarize light (A); in fluorescence-inducing
blue light (B).
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Figure 4.39 Photomicrographs of exsudatinite (Ex) intruded into cleats of huminite,
and pyrite (Py) of sample 14748 from P-SK well in white light (A); in fluorescence-
inducing blue light (B).
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Figure 4.40 Photomicrograph of huminite (Hum), funginite (Fun) and semifusinite
(Semi-fu) in groundmass of Liptodetrinite sample 14755 from P-SK well in white
light.

100um

Figure 4.41 Photomicrograph of inertinite? (In?) and huminite (Hum) of sample
14737 from P-SK well in white light.
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Figure 4.42 Photomicrographs of exsudatinite (Ex) surrounded of quartz grains (Qtz)
of sample 14728 from P-SK well in cross polarize light (A); in fluorescence-inducing
blue light (B).
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The macerals of samples from the SP1 well are given in Table 4.13. The liptinite con-
tent ranges from 68.6 to 81.6 percent. The liptinitic material is principallyalgae Bo-
tryococcus, resinite and sporinie (Figures 4.43, 4.44 and 4.45). The huminite group is
6.3 to 14.8 percent (Figure 4.46). The inertinite content ranges from 0 to 1.4 persent.
The non-fluorescing mineral matter content ranges from 8.1 to 15.4 percent (Figures
4.47 and 4.48). Pyrite content ranges from 2.1 to 3.9 percent (Figure 4.49).

In all samples, the fluorescence properties of liptrinite showed a range of yel-
lowish orange to yellowish brown. The lamalginites show laminated and filamentous
morphology. Telalginites generally show sheet-like and disc-shaped forms. Under
fluorescence-inducing blue light, they display yellow to yellowish brown color. In
groundmass of all samples, the fluorescing AOM are found associated with liptode-
trinite and non fluorescing mineral matter. The fluorescing AOM displays orange to
orange brown color. The liptodetrinites display dark yellow to yellowish brown col-
our. The sporinite generally displays yellow color and presents in some of the sam-
ples. The exsudatinite displays yellow to yellowish brown color and presents in all
samples. The resinite displays yellowish orange color and presents in all samples.

Random reflectance data (% R,) determined from eleven samples from SP1
range from 0.59% and 1.35% R, (Table 4.13).

SP2 well

The macerals of samples from the SP2 well are given in Table 4.14. The lipti-
nite content ranges from 59.6 to 81.3 percent. The liptinitic material is principally
composed of laminated lamalginite, liptodetrinite, telalginite, predominantly with
morphology similar to the extant algae Botryococcus, fluorescing amorphous organic
matter, exsudatinite, resinite followed by sporinite and cutinite (Figures 4.50, 4.51,
4.52 and 4.53). The huminite ranges from 8.1 to 15.7 percent (Figure 4.54). The iner-
tinite content is ranging from 0 to 5.2 percent. The non fluorescing mineral matter is
from 6.3 to 16.8 percent. Pyrite content ranges from 2.1 to 4.1 percent.

In all samples, the fluorescence properties of liptinite showed a range of yel-
lowish orange to yellowish brown. The lamalginites show laminated and filamentous

morphology. Telalginite generally show sheet-like and disc-shaped forms.
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Figure 4.43 Photomicrograph of disc-shaped Botryococcus-type telalginite (Bo) and
pyrite (Py) in liptodetrinite (Lip) and fluorescing amorphous organic matter ground-
mass of sample 11725 from SP1 well in fluorescence-inducing blue light.

Figure 4.44 Photomicrograph of compacted lamalginite (Lam) and disc-shaped Bo-
tryococcus-type telalginite (Bo) in groundmass of fluorescing amorphous organic
matter and liptodetrinite of sample 11753 from SP1 well in fluorescence-inducing
blue light. The brown color of lamaginite indicated the partially expelled of hydrocar-

bon.
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Figure 4.45 Photomicrograph of lamalginite (Lam) and exsudatinite (Ex) surrounded
quartz grains (Qtz) of sample 11753 from SP1 well in fluorescence-inducing blue
light.

100 pm

Figure 4.46 Photomicrographs of huminite (Hum) of sample 11726 from SP1 well in
white light.
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Figure 4.47 Photomicrographs of non-fluorescing mineral matter (Non-fl) and associ-
ation of disc-shaped Botryococcus-type telalginite (Bo) and lamalginite (Lam) in
groundmass of fluorescing amorphous organic matter and liptodetrinite of sample

11725 from SP1 well in fluorescence-inducing blue light.
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Figure 4.48 Photomicrograph of exsudatinite (Ex), resinite (Re) and non-fluorescing
mineral matter (Non-fl) of sample 11743 from SP1 well in fluorescence-inducing blue

light.
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Figure 4.49 Photomicrographs of lamalginite (Lam) and framboidal pyrite (Py) of
sample 11726 from SP1 well in white light (A); in fluorescence-inducing blue light

(B).
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Figure 4.50 Photomicrograph of association of disc-shaped Botryococcus-type telal-
ginite (B) and lamalginite (Lam) in groundmass of fluorescing amorphous organic
matter and liptodetrinite of sample 11799 from SP2 well in fluorescence-inducing
blue light.

Figure 4.51 Photomicrograph of lamalginite (Lam) and fluorescing amorphous organ-
ic matter (FI AOM) of sample 11802 from SP2 well in fluorescence-inducing blue
light.
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Figure 4.52 Photomicrograph of lamalginite (Lam) in groundmass of liptodetrinite

and pyrite (black) of sample 11820 from SP2 well in fluorescence-inducing blue light.

Figure 4.53 Photomicrograph of resinite (Re) and lamalginite (Lam) of sample 11829

from SP2 well in fluorescence-inducing blue light.
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Figure 4.54 Photomicrographs of disc-shaped Botryococcus-type telalginite (B), la-
malginite (Lam), huminite (Hum) and framboidal pyrite (Py) of sample 11825 from

SP2 well in cross polarize light (A) and in fluorescence-inducing blue light (B).
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Under fluorescence-inducing blue light, they display yellow to yellowish
brown. In groundmass of all samples, the fluorescing AOM displays orange to orange
brown color. The liptodetrinites display dark yellow to yellowish brown color. The
exsudatintes display yellow to yellowish brown color and present in all samples. The
resinite display yellowish orange colour and present in all samples. The sporinites
generally display yellow color and present in some of samples.

Random reflectance data (% R,) determined from twelve samples from SP2
range from 0.45% and 0.72% R, (Table 4.14).



