บทที่ 3

ระเบียบวิธีวิจัย

3.1 แบบจำลองที่ใช้ในการศึกษา

การศึกษาถึงผลกระทบของการใช้จ่ายของรัฐบาลด้านสาธารณสุขต่อการเจริญเติบโตทาง เศรษฐกิจของกลุ่มประเทศในเอเชียตะวันออกเฉียงใต้ ได้แก่ ประเทศไทย สิงคโปร์ อินโดนีเซีย และฟิลิปปินส์ มีรูปแบบความสัมพันธ์ของแต่ละประเทศดังนี้

$$\ln (GDP)_{t} = b_{0} + b_{1} \ln (G/POP)_{t} + e_{t}$$

โดยที่ $(G/POP)_t$ คือ สัดส่วนของการใช้จ่ายของรัฐบาลด้านสาธารณสุขต่อคน $(GDP)_t$ คือ ผลิตภัณฑ์มวลรวมภายในประเทศที่แท้จริง b_o , b_1 คือ ค่าพารามิเตอร์ e_t คือ ค่าความคลาดเคลื่อน

3.2 วิธีการศึกษา

ในการศึกษาถึงผลกระทบของการใช้จ่ายของรัฐบาลด้านสาธารณสุขต่อการเจริญเติบโต ทางเศรษฐกิจของกลุ่มประเทศในเอเชียตะวันออกเฉียงใต้ ได้แก่ ประเทศไทย สิงคโปร์ อินโดนีเซีย และฟิลิปปินส์ ได้ใช้ข้อมูลทุติยภูมิแบบรายปิตั้งแต่ปี พ.ศ.2521 – พ.ศ.2551 ประกอบด้วยตัวแปร 3 ตัว คือ การใช้จ่ายของรัฐบาลด้านสาธารณสุข ผลิตภัณฑ์มวลรวมในประเทศ จำนวนประชากร ของประเทศ

เนื่องจากจำเป็นต้องใช้ข้อมูลสถิติที่เป็นข้อมูลอนุกรมเวลา โดยที่ตัวแปรเหล่านี้ส่วนมาก มักจะมีลักษณะไม่นิ่ง นั่นคือ ค่าเฉลี่ยและค่าความแปรปรวนจะมีค่าไม่คงที่ เปลี่ยนแปลงไปตาม กาลเวลา เมื่อหาความสัมพันธ์ระหว่างตัวแปรของสมการจะทำให้ความแปรปรวนของสมการมี

ความสัมพันธ์ใม่แท้จริง โดยสังเกตได้จากค่าสถิติ t จะไม่เป็นการแจกแจงที่เป็นมาตรฐาน คือ ทำให้ ได้ค่าสถิติ t ที่สูงเกินความเป็นจริง ค่าสถิติ Durbin – Watson statistic มีค่าต่ำมาก 🛮 จึงเป็นการยากที่ จะยอมรับได้ในทางเศรษฐศาสตร์ (ทรงศักดิ์ ศรีบุญจิตต์,2547) ดังนั้นจึงต้องนำข้อมูลที่รวบรวม ้ได้มาทคสอบความนิ่งของข้อมูลโดยการทคสอบ unit root หลังจากนั้นก็นำมาทคสอบด้วยวิธี cointegration ของ Engel and Granger เพื่อศึกษาความสัมพันธ์เชิงคุลยภาพระยะยาว และวิธี Error Correction Mechanism (ECM) เพื่อศึกษาลักษณะการปรับตัวในระยะสั้น

3.2.1 การทดสอบ unit root

การทดสอบ unit root นั้นสามารถทดสอบได้โดยใช้การทดสอบ ADF test เพื่อทดสอบ ความนิ่งของข้อมูลทางเศรษฐกิจที่นำมาศึกษา ได้ดังสมการต่อไปนี้

$$\Delta X_{t} = \alpha_{1} + \beta_{1t} + \theta_{1} X_{t-1} + \sum_{i=1}^{p} c_{i} \Delta X_{t-1} + \varepsilon_{1t}$$
(3.1)

สัคส่วนการใช้ง่ายของรัฐบาลด้านสาธารณสุขต่อคน (G/POP)

ผลิตภัณฑ์มวลรวมภายในประเทศที่แท้จริง (GDP),

ค่าพารามิเตอร์ $\alpha_{_{\scriptscriptstyle 1}},\beta_{_{\scriptscriptstyle 1}}$, $\theta_{_{\scriptscriptstyle 1}}$, c คือ

ค่าความคลาดเคลื่อนเชิงสุ่ม $\epsilon_{\text{\tiny lt}}$

คือ ค่าแนวโน้ม

$$H_0: \theta_1 = 0 \qquad \text{(non-stationary)}$$

$$H_1: \theta_1 < 0 \qquad \text{(stationary)}$$

$$H_1: \theta_1 < 0$$
 (stationary)

ถ้ายอมรับ $\mathbf{H}_{\scriptscriptstyle 0}$ หมายความว่า ข้อมูลทางเศรษฐกิจที่นำมาศึกษามี unit root แสดงว่า ข้อมูลมี ลักษณะ ไม่นิ่ง (non-stationary) แต่ถ้ายอมรับ $\mathbf{H}_{_{\mathrm{I}}}$ หมายความว่า ข้อมูลทางเศรษฐกิจที่นำมาศึกษา ไม่ มี unit root แสดงว่า ข้อมูลมีลักษณะนิ่ง (stationary)

3.2.2 การทดสอบ cointegration

วิธีการทดสอบ cointegration test เป็นการทดสอบความสัมพันธ์ในระยะยาวของสัดส่วน การใช้จ่ายของรัฐบาลด้านสาธารณสุขต่อคนกับผลิตภัณฑ์มวลรวมภายในประเทศที่แท้จริง ว่ามีการ เคลื่อนใหวที่สอดคล้องกันหรือไม่ ซึ่งขั้นตอนในการทดสอบ cointegration มีดังต่อไปนี้

1.ทคสอบตัวแปรในแบบจำลองว่ามีลักษณะเป็น non-stationary หรือไม่ โดยใช้วิธี ADF test โดยไม่ต้องใส่ค่าคงที่และแนวโน้มของเวลา

2.การประมาณสมการถคถอยด้วยวิธีกำลังสองน้อยที่สุด (ordinary least square : OLS)

3.นำส่วนที่เหลือ (residual) ที่ประมาณได้จากสมการ มาทคสอบว่ามีลักษณะนิ่งหรือไม่ ซึ่ง เป็นการทคสอบส่วนที่เหลือ (residual) คังต่อไปนี้

$$\Delta \hat{\mathbf{e}}_{t} = \gamma \hat{\mathbf{e}}_{t-1} + \sum_{i=1}^{p} c_{i} \Delta \hat{\mathbf{e}}_{t-i} + \nu_{t}$$
(3.2)

โดยที่ $\hat{\mathbf{e}}_{t}$, $\hat{\mathbf{e}}_{t-1}$ คือ ค่า residual ณ เวลา t และ t - 1 ที่นำมาหาสมการถดถอยใหม่

γ คือ ค่าพารามิเตอร์

 $oldsymbol{V}_{_{\!t}}$ คือ ข้อมูลอนุกรมเวลาของตัวแปรสุ่ม

สมมติฐานที่ใช้ในการทคสอบ คือ

$$H_0: \gamma = 0$$
 (non-stationary)

 $H_1: \gamma < 0$ (stationary)

เมื่อทำการทคสอบ unit root แล้ว พบว่า ผลการทคสอบยอมรับ H_0 สามารถสรุปได้ว่า ข้อมูลนั้นมี unit root หรือมีลักษณะไม่นิ่งนั่นเอง แต่หากผลการทคสอบยอมรับ H_1 แสดงว่า ข้อมูลนั้นไม่มี unit root หรือมีลักษณะนิ่ง โดยหากค่าของความคลาดเคลื่อนมีลักษณะนิ่ง ซึ่งก็คือ I(0) สามารถสรุปได้ว่า สัดส่วนการใช้ง่ายของรัฐบาลด้านสาธารณสุขต่อคนกับผลิตภัณฑ์มวลรวม ภายในประเทศที่แท้จริงมีความสัมพันธ์เชิงคุลยภาพระยะยาว แต่หากค่าความคลาดเคลื่อนมี ลักษณะไม่นิ่ง ซึ่งก็คือ I(1) จะสามารถสรุปได้ว่า สัดส่วนการใช้ง่ายของรัฐบาลด้านสาธารณสุขต่อ คนกับผลิตภัณฑ์มวลรวมภายในประเทศที่แท้จริงไม่มีความสัมพันธ์เชิงคุลยภาพระยะยาว

3.2.3 การทดสอบ Error Correction Mechanism (ECM)

เมื่อทำการทดสอบแล้วว่าข้อมูลที่ทำการศึกษาเป็นข้อมูลอนุกรมเวลาที่มีลักษณะนิ่ง และไม่ เกิดปัญหาสมการถดถอยไม่แท้จริง สมการถดถอยที่ได้มีการร่วมไปด้วยกันโดยมีกลไกการปรับตัว เข้าสู่คุลยภาพในระยะยาวแล้ว ต่อไปเราจะทำการวิเคราะห์โดยใช้แบบจำลอง Error Correction Mechanism (ECM) คือ กลไกการปรับตัวเข้าสู่คุลยภาพในระยะสั้นของสัคส่วนการใช้จ่ายของ รัฐบาลด้านสาธารณสุขต่อคนกับผลิตภัณฑ์มวลรวมภายในประเทศที่แท้จริงดังสมการต่อไปนี้

$$\Delta \ln (\text{GDP})_{t} = \alpha_{1} + \beta_{1} \hat{e}_{t-1} + \sum_{i=1}^{p} \emptyset_{i} \Delta \ln (\text{GDP})_{t-i} + \sum_{j=0}^{q} \delta_{j} \Delta \ln (\text{G/POP})_{t-j} + \varepsilon_{1t}$$
(3.3)

โดยที่ $eta_{_{1}}$ คือ ค่าความเร็วในการปรับตัวเข้าสู่คุลยภาพในระยะยาว $\delta_{_{j}}$ คือ ค่าความยืดหยุ่นในระยะสั้น $\hat{\mathbf{e}}_{_{\mathbf{t}-1}}$ คือ พจน์ของ error term $\mathbf{\epsilon}_{_{1t}}$ คือ ค่าความคลาดเคลื่อนของตัวแปรสุ่ม

สมมติฐานที่ใช้ในการทคสอบ คือ

 $m{H}_0: m{eta}_1 = 0$ (ไม่มีความสัมพันธ์กันในระยะสั้น) $m{H}_1: m{eta}_1 < 0$ (มีความสัมพันธ์กันในระยะสั้น)

เมื่อทำการทดสอบแล้ว พบว่า ผลการทดสอบยอมรับ H_0 สามารถสรุปได้ว่า สัดส่วนการ ใช้จ่ายของรัฐบาลด้านสาธารณสุขต่อคนกับผลิตภัณฑ์มวลรวมภายในประเทศที่แท้จริง ไม่มีความ สัมพันธ์กันในระยะสั้น แต่ถ้าผลการทดสอบยอมรับ H_1 โดย β จะมีค่าอยู่ระหว่าง 0 ถึง -1 จึง สามารถสรุปได้ว่า สัดส่วนการใช้จ่ายของรัฐบาลด้านสาธารณสุขต่อคนกับผลิตภัณฑ์มวลรวม ภายในประเทศที่แท้จริงมีความสัมพันธ์กันในระยะสั้น

Copyright[©] by Chiang Mai University All rights reserved