Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/79433
Title: | Modified spatio-temporal interpolation algorithm using a combination of Kriging method and Kalman filter |
Other Titles: | ขั้นตอนวิธีการประมาณค่าในช่วงเชิงพื้นที่และเวลาแบบดัดแปรโดยใช้วิธีคริกกิงร่วมกับตัวกรองคาลแมน |
Authors: | Chalida Kongsanun |
Authors: | Sompop Moonchai Thaned Rojsiraphisal Thanasak Mouktonglang Chalida Kongsanun |
Issue Date: | Mar-2024 |
Publisher: | Chiang Mai : Graduate School, Chiang Mai University |
Abstract: | Spatio-temporal geostatistical modeling constitutes a challenge within diverse scientific and engineering disciplines. This dissertation proposes a novel modification of spatial kriging called spatio-temporal dual kriging (ST-DK), incorporating trend functions into three coefficient types: fixed coefficient, adaptive coefficient, and adaptive coefficient with Kalman filter. The adaptive coefficients are estimated using a Kalman filter, enabling the model to capture complex spatio-temporal dynamics. Furthermore, in order to illustrate the efficacy of the proposed technique, ST-DK is compared with the classical spatio-temporal regression kriging (ST-RK) method for temperature and air pressure data estimation across Thailand in year 2017. The results reveal that both ST-DK and ST-RK employed adaptive coefficient and adaptive coefficient with Kalman filter outperform these two methods using fixed coefficient counterparts for air pressure data. Additionally, the ST-DK model consistently exhibits superior performance comparing to the ST-RK model in air pressure estimation. |
URI: | http://cmuir.cmu.ac.th/jspui/handle/6653943832/79433 |
Appears in Collections: | SCIENCE: Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
610551012-CHALIDA KONGSANUN.pdf | 12.88 MB | Adobe PDF | View/Open Request a copy |
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.