Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/79385
Title: การมีจริงของผลเฉลยของ X3+Y3 = 3Z3 และ X3+4Y3 = 1 ในจำนวนเต็มแบบเกาส์
Other Titles: Existence of solutions of X3+Y3 = 3Z3 and X3+4Y3 = 1 in gaussian integers
Authors: ธนพล จันทาพุฒ
Authors: ณัฐกร สุคันธมาลา
ธนพล จันทาพุฒ
Keywords: Gaussian Integers, trivial solution and nontrivial solution.
Issue Date: 22-Dec-2566
Publisher: เชียงใหม่ : บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่
Abstract: In this research, we study the existence of solutions of equations X3+Y3 = 3Z3 and X3+4Y3 = 1 in Gaussian integers Z[i] . There are 2 cases for the solution of the above equation: trivial solution and nontrivial solution. The study found that the equation X3+Y3 = 3Z3 has only trivial solution that is , (α,β,γ)=(δ,-δ,0) where δ ꞓ Z[i]. If the above equation has a nontrivial solution, then an elliptic curve y^2=x^3+3888 has rational point in Q^2 . However, we have shown that this curve has no rational point in Q^2 . Moreover, the equation X3+4Y3 = 1 has only trivial solution (1,0) .
URI: http://cmuir.cmu.ac.th/jspui/handle/6653943832/79385
Appears in Collections:SCIENCE: Independent Study (IS)

Files in This Item:
File Description SizeFormat 
620532006-ธนพล จันทาพุฒ.pdf2.55 MBAdobe PDFView/Open    Request a copy


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.