Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/79385
Title: | การมีจริงของผลเฉลยของ X3+Y3 = 3Z3 และ X3+4Y3 = 1 ในจำนวนเต็มแบบเกาส์ |
Other Titles: | Existence of solutions of X3+Y3 = 3Z3 and X3+4Y3 = 1 in gaussian integers |
Authors: | ธนพล จันทาพุฒ |
Authors: | ณัฐกร สุคันธมาลา ธนพล จันทาพุฒ |
Keywords: | Gaussian Integers, trivial solution and nontrivial solution. |
Issue Date: | 22-Dec-2566 |
Publisher: | เชียงใหม่ : บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่ |
Abstract: | In this research, we study the existence of solutions of equations X3+Y3 = 3Z3 and X3+4Y3 = 1 in Gaussian integers Z[i] . There are 2 cases for the solution of the above equation: trivial solution and nontrivial solution. The study found that the equation X3+Y3 = 3Z3 has only trivial solution that is , (α,β,γ)=(δ,-δ,0) where δ ꞓ Z[i]. If the above equation has a nontrivial solution, then an elliptic curve y^2=x^3+3888 has rational point in Q^2 . However, we have shown that this curve has no rational point in Q^2 . Moreover, the equation X3+4Y3 = 1 has only trivial solution (1,0) . |
URI: | http://cmuir.cmu.ac.th/jspui/handle/6653943832/79385 |
Appears in Collections: | SCIENCE: Independent Study (IS) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
620532006-ธนพล จันทาพุฒ.pdf | 2.55 MB | Adobe PDF | View/Open Request a copy |
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.