Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/77698
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVites Longanien_US
dc.contributor.authorHatairat Yingtaweesittikulen_US
dc.date.accessioned2022-10-16T08:19:44Z-
dc.date.available2022-10-16T08:19:44Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn16860209en_US
dc.identifier.other2-s2.0-85101184655en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85101184655&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/77698-
dc.description.abstractIt is known that K2n+1 is the sum of n spanning cycles. We assign colors from 2n + 1 colors to each line of K2n+1 . We find that, with some condition, it is possible to assign colors to K2n+1 such that each point is adjacent to 2n lines of different colors and each of n hamiltonian cycles has 2n + 1 lines of different colors.en_US
dc.subjectMathematicsen_US
dc.titleK<inf>2n+1</inf> that are (2n + 1)-color n sequentially hamiltonianen_US
dc.typeJournalen_US
article.title.sourcetitleThai Journal of Mathematicsen_US
article.volume18en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.