Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/77689
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPrakassawat Boonmeeen_US
dc.contributor.authorPharunyou Chanthornen_US
dc.date.accessioned2022-10-16T08:19:00Z-
dc.date.available2022-10-16T08:19:00Z-
dc.date.issued2020-12-01en_US
dc.identifier.issn16860209en_US
dc.identifier.other2-s2.0-85101412094en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85101412094&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/77689-
dc.description.abstractIn this study, we introduce a construction of semi-copulas via a composition of multivariate semi-copulas with a quadratic polynomial. Obviously, such compositions will not always result in a semi-copula. Our main focus is to provide a characterization of such polynomials in terms of their coefficients. We found that the set of those coefficients forms a convex set with a linear boundary. We also found that several such transformations that are not a convex combination of semi-copulas.en_US
dc.subjectMathematicsen_US
dc.titleQuadratic transformations of multivariate semi-copulasen_US
dc.typeJournalen_US
article.title.sourcetitleThai Journal of Mathematicsen_US
article.volume18en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.