Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/77687
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPiyashat Sriprataken_US
dc.date.accessioned2022-10-16T08:18:59Z-
dc.date.available2022-10-16T08:18:59Z-
dc.date.issued2020-12-01en_US
dc.identifier.issn16860209en_US
dc.identifier.other2-s2.0-85101639961en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85101639961&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/77687-
dc.description.abstractGiven a weighted complete directed graph on n nodes, the asymmetric traveling salesman problem (ATSP) is to find a minimum weighted directed cycle of length n. This is a well-studied NP-hard problem. Sometimes, we require a cycle containing a specific number of nodes. Thus, we concentrate on finding a minimum weighted directed cycle of length k when k is a positive integer in {2, 3, …, n}. The problem is called the minimum weighted directed k-cycle problem (MWDkCP), a generalization of ATSP. Nearest neighbour algorithm (NN) and repetitive nearest neighbour algorithm (RNN) for ATSP are known for good computational results on Euclidean ATSP, but poor performances on some graphs. We give instances to show that establishing an approximation ratio for NN is impossible, and a result from NN can be worse than average. We also prove that NN can output a unique maximum weighted directed k-cycle, and offer a sufficient condition to avoid that scenario. As for RNN, when n ≠ k, it has no approximation ratio and can be worse than average. When n ≥ 4, we obtain a lower bound and an upper bound for the domination number of RNN.en_US
dc.subjectMathematicsen_US
dc.titleWorst case analysis of nearest neighbour algorithms for the minimum weighted directed k-cycle problemen_US
dc.typeJournalen_US
article.title.sourcetitleThai Journal of Mathematicsen_US
article.volume18en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.