Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/77150
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSaritphat Orrapinen_US
dc.contributor.authorThoetphum Benyakornen_US
dc.contributor.authorDominic P.J. Howarden_US
dc.contributor.authorBoonying Siribumrungwongen_US
dc.contributor.authorKittipan Rerkasemen_US
dc.date.accessioned2022-10-16T07:23:54Z-
dc.date.available2022-10-16T07:23:54Z-
dc.date.issued2021-02-18en_US
dc.identifier.issn14651858en_US
dc.identifier.other2-s2.0-85101782563en_US
dc.identifier.other10.1002/14651858.CD000071.pub4en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85101782563&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/77150-
dc.description.abstractBackground: Extracranial carotid artery stenosis is the major cause of stroke, which can lead to disability and mortality. Carotid endarterectomy (CEA) with carotid patch angioplasty is the most popular technique for reducing the risk of stroke. Patch material may be made from an autologous vein, bovine pericardium, or synthetic material including polytetrafluoroethylene (PTFE), Dacron, polyurethane, and polyester. This is an update of a review that was first published in 1996 and was last updated in 2010. Objectives: To assess the safety and efficacy of different types of patch materials used in carotid patch angioplasty. The primary hypothesis was that a synthetic material was associated with lower risk of patch rupture versus venous patches, but that venous patches were associated with lower risk of perioperative stroke and early or late infection, or both. Search methods: We searched the Cochrane Stroke Group trials register (last searched 25 May 2020); the Cochrane Central Register of Controlled Trials (CENTRAL; 2020, Issue 4), in the Cochrane Library; MEDLINE (1966 to 25 May 2020); Embase (1980 to 25 May 2020); the Index to Scientific and Technical Proceedings (1980 to 2019); the Web of Science Core Collection; ClinicalTrials.gov; and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) portal. We handsearched relevant journals and conference proceedings, checked reference lists, and contacted experts in the field. Selection criteria: Randomised and quasi-randomised trials (RCTs) comparing one type of carotid patch with another for CEA. Data collection and analysis: Two review authors independently assessed eligibility, risk of bias, and trial quality; extracted data; and determined the quality of evidence using the GRADE approach. Outcomes, for example, perioperative ipsilateral stroke and long-term ipsilateral stroke (at least one year), were collected and analysed. Main results: We included 14 trials involving a total of 2278 CEAs with patch closure operations: seven trials compared vein closure with PTFE closure, five compared Dacron grafts with other synthetic materials, and two compared bovine pericardium with other synthetic materials. In most trials, a patient could be randomised twice and could have each carotid artery randomised to different treatment groups. Synthetic patch compared with vein patch angioplasty 
Vein patch may have little to no difference in effect on perioperative ipsilateral stroke between synthetic versus vein materials, but the evidence is very uncertain (odds ratio (OR) 2.05, 95% confidence interval (CI) 0.66 to 6.38; 5 studies, 797 participants; very low-quality evidence). Vein patch may have little to no difference in effect on long-term ipsilateral stroke between synthetic versus vein materials, but the evidence is very uncertain (OR 1.45, 95% CI 0.69 to 3.07; P = 0.33; 4 studies, 776 participants; very low-quality evidence). Vein patch may increase pseudoaneurysm formation when compared with synthetic patch, but the evidence is very uncertain (OR 0.09, 95% CI 0.02 to 0.49; 4 studies, 776 participants; very low-quality evidence). However, the numbers involved were small. Dacron patch compared with other synthetic patch angioplasty 
Dacron versus PTFE patch materials. PTFE patch may reduce the risk of perioperative ipsilateral stroke (OR 3.35, 95% CI 0.19 to 59.06; 2 studies, 400 participants; very low-quality evidence). PTFE patch may reduce the risk of long-term ipsilateral stroke (OR 1.52, 95% CI 0.25 to 9.27; 1 study, 200 participants; very low-quality evidence). Dacron may result in an increase in perioperative combined stroke and transient ischaemic attack (TIA) (OR 4.41 95% CI 1.20 to 16.14; 1 study, 200 participants; low-quality evidence) when compared with PTFE. Early arterial re-stenosis or occlusion (within 30 days) was also higher for Dacron patches. During follow-up for longer than one year, more 'any strokes' (OR 10.58, 95% CI 1.34 to 83.43; 2 studies, 304 participants; low-quality evidence) and stroke/death (OR 6.06, 95% CI 1.31 to 28.07; 1 study, 200 participants; low-quality evidence) were reported with Dacron patch closure, although numbers of outcome events were small. Dacron patch may increase the risk of re-stenosis when compared with other synthetic materials (especially with PTFE), but the evidence is very uncertain (OR 3.73, 95% CI 0.71 to 19.65; 3 studies, 490 participants; low-quality evidence). Bovine pericardium patch compared with other synthetic patch angioplasty 
Bovine pericardium versus PTFE patch materials. Evidence suggests that bovine pericardium patch results in a reduction in long-term ipsilateral stroke (OR 4.17, 95% CI 0.46 to 38.02; 1 study, 195 participants; low-quality evidence). Bovine pericardial patch may reduce the risk of perioperative fatal stroke, death, and infection compared to synthetic material (OR 5.16, 95% CI 0.24 to 108.83; 2 studies, 290 participants; low-quality evidence for PTFE, and low-quality evidence for Dacron; OR 4.39, 95% CI 0.48 to 39.95; 2 studies, 290 participants; low-quality evidence for PTFE, and low-quality evidence for Dacron; OR 7.30, 95% CI 0.37 to 143.16; 1 study, 195 participants; low-quality evidence, respectively), but the numbers of outcomes were small. The evidence is very uncertain about effects of the patch on infection outcomes. Authors' conclusions: The number of outcome events is too small to allow conclusions, and more trial data are required to establish whether any differences do exist. Nevertheless, there is little to no difference in effect on perioperative and long-term ipsilateral stroke between vein and any synthetic patch material. Some evidence indicates that other synthetic patches (e.g. PTFE) may be superior to Dacron grafts in terms of perioperative stroke and TIA rates, and both early and late arterial re-stenosis and occlusion. Pseudoaneurysm formation may be more common after use of a vein patch than after use of a synthetic patch. Bovine pericardial patch, which is an acellular xenograft material, may reduce the risk of perioperative fatal stroke, death, and infection compared to other synthetic patches. Further large RCTs are required before definitive conclusions can be reached.en_US
dc.subjectMedicineen_US
dc.titlePatches of different types for carotid patch angioplastyen_US
dc.typeJournalen_US
article.title.sourcetitleCochrane Database of Systematic Reviewsen_US
article.volume2021en_US
article.stream.affiliationsFaculty of Medicine, Thammasat Universityen_US
article.stream.affiliationsUniversity of Oxford Medical Sciences Divisionen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.