Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/76882
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jie Wu | en_US |
dc.contributor.author | Li Zhao | en_US |
dc.contributor.author | Heping Pan | en_US |
dc.date.accessioned | 2022-10-16T07:19:44Z | - |
dc.date.available | 2022-10-16T07:19:44Z | - |
dc.date.issued | 2021-01-01 | en_US |
dc.identifier.issn | 16879139 | en_US |
dc.identifier.issn | 16879120 | en_US |
dc.identifier.other | 2-s2.0-85112314277 | en_US |
dc.identifier.other | 10.1155/2021/5130409 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85112314277&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/76882 | - |
dc.description.abstract | In this paper, we consider the following indirect signal generation and singular sensitivity nt=Δn+χ∇⋅n/ϕc∇c, x∈Ω,t>0,ct=Δc-c+w, x∈Ω,t>0,wt=Δw-w+n, x∈Ω,t>0, in a bounded domain Ω⊂RNN=2,3 with smooth boundary ∂Ω. Under the nonflux boundary conditions for n, c, and w, we first eliminate the singularity of ϕc by using the Neumann heat semigroup and then establish the global boundedness and rates of convergence for solution. | en_US |
dc.subject | Mathematics | en_US |
dc.subject | Physics and Astronomy | en_US |
dc.title | Boundedness and Asymptotic Behavior to a Chemotaxis System with Indirect Signal Generation and Singular Sensitivity | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Advances in Mathematical Physics | en_US |
article.volume | 2021 | en_US |
article.stream.affiliations | Chengdu University | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.