Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/76879
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTanadon Chaobankohen_US
dc.contributor.authorRaweerote Suparatulatornen_US
dc.contributor.authorChoonkil Parken_US
dc.contributor.authorYeol Je Choen_US
dc.date.accessioned2022-10-16T07:19:39Z-
dc.date.available2022-10-16T07:19:39Z-
dc.date.issued2021-01-01en_US
dc.identifier.issn18273491en_US
dc.identifier.issn00355038en_US
dc.identifier.other2-s2.0-85116270383en_US
dc.identifier.other10.1007/s11587-021-00648-3en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85116270383&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/76879-
dc.description.abstractFor any fixed s∈{z∈C:z≠0and|z|<1}, we consider the following functional inequality: ‖f(a+a′,c+c′)+f(a+a′,c-c′)+f(a-a′,c+c′)+f(a-a′,c-c′)-4f(a,c)-4f(a,c′)‖≤‖s(2f(a+a′,c-c′)+2f(a-a′,c+c′)-4f(a,c)-4f(a,c′)+4f(a′,c′))‖.In this paper, we obtain the Hyers–Ulam stability of the proposed functional inequality using the direct and fixed point methods.en_US
dc.subjectMathematicsen_US
dc.titleThe Hyers–Ulam stability of an additive-quadratic s-functional inequality in Banach spacesen_US
dc.typeJournalen_US
article.title.sourcetitleRicerche di Matematicaen_US
article.stream.affiliationsHanyang Universityen_US
article.stream.affiliationsGyeongsang National Universityen_US
article.stream.affiliationsChina Medical Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.