Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/76868
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKritsada Sangkhananen_US
dc.date.accessioned2022-10-16T07:19:31Z-
dc.date.available2022-10-16T07:19:31Z-
dc.date.issued2021-01-01en_US
dc.identifier.issn23915455en_US
dc.identifier.other2-s2.0-85123921714en_US
dc.identifier.other10.1515/math-2021-0109en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85123921714&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/76868-
dc.description.abstractLet T (X) be the full transformation semigroup on a set X. For an equivalence E on X, let TE∗ (X) = {α ϵ T (X): ∀ x, y ϵ X, (x, y) ϵ E ⇔ (x α, y α) ϵ E }. For each nonempty subset Y of X, we denote the restriction of E to Y by EY. Let TE∗ (X, Y) be the intersection of the semigroup TE∗ (X) with the semigroup of all transformations with restricted range Y under the condition that |X/E| = |Y/EY|. Equivalently, TE∗ (X, Y) = { α ϵ TE∗ (X): X α ⊆ Y }, where |X/E| = |Y/EY|. Then TE∗ (X, Y) is a subsemigroup of TE∗(X). In this paper, we characterize the natural partial order on TE∗ (X, Y). Then we find the elements which are compatible and describe the maximal and minimal elements. We also prove that every element of TE∗ (X, Y) lies between maximal and minimal elements. Finally, the existence of an upper cover and a lower cover is investigated.en_US
dc.subjectMathematicsen_US
dc.titleA partial order on transformation semigroups with restricted range that preserve double direction equivalenceen_US
dc.typeJournalen_US
article.title.sourcetitleOpen Mathematicsen_US
article.volume19en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.