Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/76846
Full metadata record
DC FieldValueLanguage
dc.contributor.authorThodsaporn Kumduangen_US
dc.contributor.authorSorasak Leeratanavaleeen_US
dc.date.accessioned2022-10-16T07:19:05Z-
dc.date.available2022-10-16T07:19:05Z-
dc.date.issued2021-06-01en_US
dc.identifier.issn04548124en_US
dc.identifier.issn12256951en_US
dc.identifier.other2-s2.0-85112209573en_US
dc.identifier.other10.5666/KMJ.2021.61.2.223en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85112209573&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/76846-
dc.description.abstractLet n be afixed natural number. Menger algebras of rank n can be regarded as a canonical generalization of arbitrary semigroups. This paper is concerned with study- ing algebraic properties of Menger algebras of rank n by first defining a special class of full n-place functions, the so-called a left translation, which possess necessary and sufficient conditions for an (n + 1)-groupoid to be a Menger algebra of rank n. The isomorphism parts begin with introducing the concept of homomorphisms, and congruences in Menger algebras of rank n. These lead us to establish a quotient structure consisting a nonempty set factored by such congruences together with an operation defined on its equivalence classes. Finally, the fundamental homomorphism theorem and isomorphism theorems for Menger algebras of rank n are given. As a consequence, our results are significant in the study of algebraic theoretical Menger algebras of rank n. Furthermore, we extend the usual notions of ordinary semigroups in a natural way.en_US
dc.subjectMathematicsen_US
dc.titleLeft Translations and Isomorphism Theorems for Menger Algebras of Rank nen_US
dc.typeJournalen_US
article.title.sourcetitleKyungpook Mathematical Journalen_US
article.volume61en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.