Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/76504
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRaweerote Suparatulatornen_US
dc.contributor.authorPhakdi Charoensawanen_US
dc.contributor.authorAnchalee Khempheten_US
dc.date.accessioned2022-10-16T07:11:02Z-
dc.date.available2022-10-16T07:11:02Z-
dc.date.issued2021-11-30en_US
dc.identifier.issn10991476en_US
dc.identifier.issn01704214en_US
dc.identifier.other2-s2.0-85108145902en_US
dc.identifier.other10.1002/mma.7576en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85108145902&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/76504-
dc.description.abstractIn this work, a new algorithm is suggested to solve the variational inequality problems for Lipschitz continuous and monotone operators and the fixed point problems for quasi-nonexpansive operators. This algorithm is constructed based on the inertial subgradient extragradient method. In addition, a strong convergence theorem for this algorithm is obtained under some extra conditions. Furthermore, an application to a signal recovery in compressed sensing problem is shown as a numerical example of the algorithm.en_US
dc.subjectEngineeringen_US
dc.subjectMathematicsen_US
dc.titleAn inertial subgradient extragradient method of variational inequality problems involving quasi-nonexpansive operators with applicationsen_US
dc.typeJournalen_US
article.title.sourcetitleMathematical Methods in the Applied Sciencesen_US
article.volume44en_US
article.stream.affiliationsMinistry of Higher Education, Science, Research and Innovationen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.