Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/76360
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhongorzul Munkhbaten_US
dc.contributor.authorBilguun Jargalsaikhanen_US
dc.contributor.authorTsatsral Amarbayasgalanen_US
dc.contributor.authorNipon Theera-Umponen_US
dc.contributor.authorKeun Ho Ryuen_US
dc.date.accessioned2022-10-16T07:08:42Z-
dc.date.available2022-10-16T07:08:42Z-
dc.date.issued2021-01-01en_US
dc.identifier.issn16113349en_US
dc.identifier.issn03029743en_US
dc.identifier.other2-s2.0-85104795118en_US
dc.identifier.other10.1007/978-3-030-73280-6_53en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85104795118&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/76360-
dc.description.abstractOne of the tremendous topics in the music industry is an automatic music composition. In this study, we aim to build an architecture that shows how LSTM models compose music using the four emotional piano datasets. The architecture consists of four steps: data collection, data preprocessing, training the models with one and two hundred epochs, and evaluation by loss analysis. From the result of this work, the model trained for 200 epochs give the lowest loss error rate for the composing of emotional piano music. Finally, we generate four emotional melodies based on the result.en_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleEmotional Piano Melodies Generation Using Long Short-Term Memoryen_US
dc.typeBook Seriesen_US
article.title.sourcetitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
article.volume12672 LNAIen_US
article.stream.affiliationsTon-Duc-Thang Universityen_US
article.stream.affiliationsChungbuk National Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.