Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/76351
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNattapat Karaketen_US
dc.contributor.authorSansanee Auephanwiriyakulen_US
dc.contributor.authorNipon Theera-Umponen_US
dc.date.accessioned2022-10-16T07:08:38Z-
dc.date.available2022-10-16T07:08:38Z-
dc.date.issued2021-01-01en_US
dc.identifier.issn21903026en_US
dc.identifier.issn21903018en_US
dc.identifier.other2-s2.0-85105943493en_US
dc.identifier.other10.1007/978-981-33-6757-9_46en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85105943493&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/76351-
dc.description.abstractTo help in the education-assistive technology in automobile industry, one of the best approaches is to create an augmented reality of each car part in the engine room. To do so, the location of each part is required to be identified. In this paper, the Multi-layer Multi-model Images Classifier Ensemble (MICE) is utilized in the recognition process. The data was collected from car engine room of the Toyota Vios 2017 model in different angles and different lighting conditions. The recognition rate of the best validation test set is 91.25% even though there is still problem with the similarity between classes.en_US
dc.subjectComputer Scienceen_US
dc.subjectDecision Sciencesen_US
dc.titleAutomobile Parts Localization Using Multi-layer Multi-model Images Classifier Ensembleen_US
dc.typeBook Seriesen_US
article.title.sourcetitleSmart Innovation, Systems and Technologiesen_US
article.volume212en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.