Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/76325
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorJamal Laaouineen_US
dc.contributor.authorMohammed E. Charkanien_US
dc.contributor.authorWarattaya Chinnakumen_US
dc.date.accessioned2022-10-16T07:08:23Z-
dc.date.available2022-10-16T07:08:23Z-
dc.date.issued2021-01-01en_US
dc.identifier.issn21693536en_US
dc.identifier.other2-s2.0-85117485529en_US
dc.identifier.other10.1109/ACCESS.2021.3117658en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85117485529&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/76325-
dc.description.abstractLet $p$ be any prime, $s$ and $m$ be positive integers. In this paper, we completely determine the Hamming distance of all constacyclic codes of length ps$ over the finite commutative chain ring $\mathbb {F}{pm}+ u\mathbb {F}{pm} + u{2}\mathbb {F}{pm}\,\,\, (u3=0)$. As applications, we identify all maximum distance saparable codes (i.e., optimal codes with respect to the Singleton bound) among them.en_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.subjectMaterials Scienceen_US
dc.titleHamming distance of constacyclic codes of length p<sup>s</sup>over F<inf>p</inf><sup>m</sup>CuF<inf>p</inf><sup>m</sup>Cu<sup>2</sup>Fp<sup>m</sup>en_US
dc.typeJournalen_US
article.title.sourcetitleIEEE Accessen_US
article.volume9en_US
article.stream.affiliationsTon-Duc-Thang Universityen_US
article.stream.affiliationsFaculté des Sciences Dhar El Mahraz, Université Sidi Mohamed Ben Abdellahen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.