Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/76325
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hai Q. Dinh | en_US |
dc.contributor.author | Jamal Laaouine | en_US |
dc.contributor.author | Mohammed E. Charkani | en_US |
dc.contributor.author | Warattaya Chinnakum | en_US |
dc.date.accessioned | 2022-10-16T07:08:23Z | - |
dc.date.available | 2022-10-16T07:08:23Z | - |
dc.date.issued | 2021-01-01 | en_US |
dc.identifier.issn | 21693536 | en_US |
dc.identifier.other | 2-s2.0-85117485529 | en_US |
dc.identifier.other | 10.1109/ACCESS.2021.3117658 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85117485529&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/76325 | - |
dc.description.abstract | Let $p$ be any prime, $s$ and $m$ be positive integers. In this paper, we completely determine the Hamming distance of all constacyclic codes of length ps$ over the finite commutative chain ring $\mathbb {F}{pm}+ u\mathbb {F}{pm} + u{2}\mathbb {F}{pm}\,\,\, (u3=0)$. As applications, we identify all maximum distance saparable codes (i.e., optimal codes with respect to the Singleton bound) among them. | en_US |
dc.subject | Computer Science | en_US |
dc.subject | Engineering | en_US |
dc.subject | Materials Science | en_US |
dc.title | Hamming distance of constacyclic codes of length p<sup>s</sup>over F<inf>p</inf><sup>m</sup>CuF<inf>p</inf><sup>m</sup>Cu<sup>2</sup>Fp<sup>m</sup> | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | IEEE Access | en_US |
article.volume | 9 | en_US |
article.stream.affiliations | Ton-Duc-Thang University | en_US |
article.stream.affiliations | Faculté des Sciences Dhar El Mahraz, Université Sidi Mohamed Ben Abdellah | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.