Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/76276
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPunyanut Damnongen_US
dc.contributor.authorPhimphaka Taninpongen_US
dc.contributor.authorJakramate Bootkrajangen_US
dc.date.accessioned2022-10-16T07:07:43Z-
dc.date.available2022-10-16T07:07:43Z-
dc.date.issued2021-05-19en_US
dc.identifier.other2-s2.0-85112829651en_US
dc.identifier.other10.1109/ECTI-CON51831.2021.9454929en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85112829651&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/76276-
dc.description.abstractThis study aims to evaluate simple recurrent neural network (simple RNN), long short-term memory (LSTM) and gate recurrent unit (GRU) for steam trap opening sound classification. This study conducts three experiments using different activation functions: ReLU, tanh and sigmoid functions at the output layer. Five feature extraction methods are employed including zero-crossing rate, spectral centroid, Mel-frequency cepstral coefficient, spectral rolloff, and short-term Fourier transform. We collected 24, 512 real-world audio files of steam trap operations, dividing into three subsets for evaluating the models. The results showed that an LSTM model employing sigmoid function yielded the highest precision, recall, specificity and F1 score of 75.00%, 66.67%, 99.97% and 70.59%, respectively. In addition, the LSTM model also outperformed the GRU and the Simple RNN.en_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.subjectPhysics and Astronomyen_US
dc.titleSteam trap opening sound recognitionen_US
dc.typeConference Proceedingen_US
article.title.sourcetitleECTI-CON 2021 - 2021 18th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology: Smart Electrical System and Technology, Proceedingsen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.