Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/75627
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChainarong Khunpanuken_US
dc.contributor.authorNuttapol Pakkaranangen_US
dc.contributor.authorBancha Panyanaken_US
dc.date.accessioned2022-10-16T07:01:24Z-
dc.date.available2022-10-16T07:01:24Z-
dc.date.issued2022-01-01en_US
dc.identifier.issn23148888en_US
dc.identifier.issn23148896en_US
dc.identifier.other2-s2.0-85133306192en_US
dc.identifier.other10.1155/2022/1934975en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85133306192&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/75627-
dc.description.abstractIn this paper, we present improved iterative methods for evaluating the numerical solution of an equilibrium problem in a Hilbert space with a pseudomonotone and a Lipschitz-type bifunction. The method is built around two computing phases of a proximal-like mapping with inertial terms. Many such simpler step size rules that do not involve line search are examined, allowing the technique to be enforced more effectively without knowledge of the Lipschitz-type constant of the cost bifunction. When the control parameter conditions are properly defined, the iterative sequences converge weakly on a particular solution to the problem. We provide weak convergence theorems without knowing the Lipschitz-type bifunction constants. A few numerical tests were performed, and the results demonstrated the appropriateness and rapid convergence of the new methods over traditional ones.en_US
dc.subjectMathematicsen_US
dc.titleConvergence Analysis of New Construction Explicit Methods for Solving Equilibrium Programming and Fixed Point Problemsen_US
dc.typeJournalen_US
article.title.sourcetitleJournal of Function Spacesen_US
article.volume2022en_US
article.stream.affiliationsPhetchabun Rajabhat Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.